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Quantum gates

Anna Cristina Cavallari Inacio

Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, 13560-970 Sao Carlos, SP, Brazil

Abstract: Quantum computing is an area that
awakens the interest of a lot of people either they
work with science and technology or not. This paper
aim is to brief discuss quantum gates, a really im-
portant concept for quantum computing. In this we
describe the concept of qubits, how quantum gates
transform them, by studying the most common and
useful gates, and introduce quantum circuits and
their importance to the development of quantum
computers.

1.1 Introduction

With the advance of quantum mechanics, sur-
faced an interest in understand and manipulate
quantum systems and one of the proposed ways re-
sulted in what we know today about quantum com-
puting and quantum information. In the beginning
of the 80’s the physicist Paul Benioff suggests that
quantum mechanics can be used in computing by
proposing a quantum mechanical model of the Tur-
ing Machine, the base for classic computing now
days. Later, Richard Feynman pointed out that
simulating quantum mechanics systems on classical
computers is a extremely difficult task, mostly in
terms of time, and suggested that computers based
on quantum mechanics would allow us to avoid the
difficulties since it would have greater power than
the classic one [1]. Based on this, in the next
decades, several teams of researchers began to study
the use of quantum systems in computing. Cur-
rently, in 2019, Google AI claimed to have achieved
quantum supremacy, solving in 200 seconds an op-
eration that would be infeasible on any classical ma-
chine, even supercomputers|2]. The first challenge
for quantum computing is to understand what is the
quantum bit (qubit), analogous to the bit of clas-
sical computing, and the quantum logic gates that
make up the quantum circuits responsible for the

operation of quantum computers. This work aim to
study a description of qubits and some of the most
important quantum gates and explore a little how
basic quantum circuits function

1.2 Quantum Bits

In classical computation, the bit is a binary digit
that is the fundamental state for storing informa-
tion, assuming the value 0 or 1. Analogously, in
the area of quantum computing or quantum infor-
mation, this role is fulfilled by a unit named quan-
tum bit or qubit. The qubit has two possible states
|0) and |1), that correspond to the classical ones,
however, it also can be linear combinations of these
states, which we call in quantum mechanics a su-
perposition, given by [3]:

[¥) = 0) + 8 1) (1.1)

where o and 3 are complex numbers. The state
of a qubit is a vector in a two-dimensional complex
vector space and the states |0) and |1) are compu-
tational basis states that form an orthonormal basis
for this vector space. A useful way to visualize the
state of a qubit is geometric representation through
the Bloch sphere how it is showed in Fig. 2.1.

Because |a|? + |3]? = 1, we can rewrite Eq. 2.1
as

0 0
[1)) = cos 3 |0) + exp{ip} sin 5 1) (1.2)

where 6 and ¢ define a point on the unite sphere.
The computational basis states lie on the z-axis.

For measuring the bit value in the computational
basis, we must determine the alignment of its spin
with respect to the z-axis. If the qubit is aligned



Figure 1.1: Qubit state |1)) represented by a point
on Bloch sphere. Its parameters are 6 and ¢

"spin-up" it s in the state |0), and if it is aligned
"spin-down" it is in the state |1). In a more general
way, the result of a measuring is a probability that
depends on the values of o and 3, so we get either
the result 0, with a probability |a|?, or the result
1, with a probability |3|?, where, as said before,
af? + 18 = 1.

1.3 Quantum Gates

The classic logic gates are a way the bits can
be stored or transformed creating new information.
There are three basic logic gates, each of them has
two entry bits and produces one exit: the gate NOT,
that flips the state of the bit, changing 0 to 1 and
1 to 0; the gate OR, that returns 1 if one of the
entries is equal to 1; and the gate AND, that re-
turns 1 only if both entries are equal to the value
1 and returns 0 any other case. Quantum gates
follow the same principle, operating on n qubits.
Quantum gates are unitary operators described as
unitary matrices relative to some basis. Lets con-
sider a logic gate represented by the U operator, if
we apply U' in the final state we obtain the ini-
tial one: U'|yy) = UTU = |3;), i.e. UTU =1 and
U is a unitary operator. This means that unitary
operators are reversible. How discussed previously,
quantum gates are unitary operators, therefore they
are reversible, we can undo a gate using the output
qubit to obtain the initial one. This is a very im-
portant propriety. Exists an uncountable number
of gates, some of them more important and known
than others and below we will see a brief discussion
of some of them.

1.3.1 Single qubit logic gate
Pauli Gates

The first Pauli Gate comes from the Pauli X ma-
trix and is equal with the classical NOT gate. We
can represent the NOT gate in matrix form as

X = E (ﬂ (1.3)

It "negates" the computational basis states |0)
and |1) when applied, so the corresponding output
from NOT gate acting on a superposition state is
given by

SORG I

If we apply this gate one more time, we return
to the initial state, thus XX = I. The next one,
naturally, comes from the Pauli Y gate

ORIE

We also have the gate from Pauli Z matrix, that
acts inverting the signal of the computational basis
state |1) and maintaining the |0) the same

Z- {(1) _OJ (1.7)

ol e

Both previous gates, return to initial state if ap-
plied two times, thus, YY =1 anf ZZ =1 We can
represent quantum gates graphically, as shown in
Fig 2.2. The qubit entry is represented by a hori-
zontal line in the left side of the box (gate) and the
output is the horizontal line on the other side. This
assembly is what we know as a very simple quantum
circuit. We will study quantum circuits with more
depth latter on this work.
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Figure 1.2: Graphically representation of the most
used single qubit gates. From left to right and top
to bottom, Pauli gates X, Y, Z and Hadarmad gate
H. Qubits are represented by the horizontal lines
and the gates by the box.

Hadarmad Gate

One of the most useful single qubit gates is the
Hadamard gate, H, defined by the matrix

o= % E _11} (1.9)

When the H gate acts on the computational ba-
sis states it transforms them into a superposition
state, which is a very powerful operation in quan-
tum computing. By applying in parallel, a separate
Hadamard gate to each of n qubits, each in the state
|0), we can create an n-qubit superposition contain-
ing 2" component eigenstates, giving the quantum
computer its ability to load exponentially many in-
dices only using polynomially many operations, in-
creasing the computing velocity compered to the
best classical algorithms [4].

1
110) = —(0) + 1) (1.10)
HI1) = ——(J0) - 1)) (1.11)

V2

Just like the other single bit gates, if a qubit
passes through the Hadamard gate twice consecu-
tively it returns to the original state, HH =1

1.3.2

Let |00),|01),]10),|11) be a basis for two-qubit
systems.

Two qubit logic gate

controlled-NOT gate

The controlled-NOT gate, or CNOT gate, is a
very important gate for quantum computation. The
gate flips the second qubit, called target qubit, when
the first qubit, called control qubit, is |1). It can be
represented in the following matrix form

(1.12)

o o = O
= O O O
o= OO

1
0
Ucnor = 0
0

The action of the controlled-NOT gate is given
by

Ucnor : 100) — |00, |01) — |01),
10) — [11),]11) — |10)

(1.13)
(1.14)

Graphically, a CNOT gate is expressed as shown
in Fig y, being e the control bit, while ® is the
conditional negation.

C-NOT

SWAP

Figure 1.3: Graphically representation of two-qubit
gates CNOT gate, in the top, and SWAP gate, in
the bottom.

SWAP gate

The SWAP gate, as the name indicates, swaps
the states. The matrix is given by

Uswap = (1.15)

oS o o
o= OO
o o= O
—_ o O O

It acts as a linear operator on a superposition of
states as

Usw ap [t1,02) = [2,11) (1.16)



1.3.3 Three-qubit logic gate

Let [000), |001),[010) , [011), |100),[101) , |110) , |111)

be a basis for three-qubit systems.

Toffoli gate

The Toffoli gate has three inputs, and the third
qubit flips if only the first two qubits are both in the
state |1). Because of this behaviour, it is also called
the controlled-controlled-NOT gate (CCNOT). The

matrix representation is given by

Uconor = (1.17)

SO OO O OO
[N eololeoNeoNal =
[N eNeNoNol el
SO OO RO OO
SO OO OO
[=Nel oo Ne NNl
_— O OO o oo
O OO OO oo

Toffoli

Fredkin f

Figure 1.4: Graphically representation of three-
qubit gates Toffoli gate, in the top, and Fredkin
gate, in the bottom.

Fredkin gate

Under the action of the Fredkin gate the second
and third qubits are swapped if and only if the first
qubit is in the |1) state. In another words, the Fred-
kin gate is the controlled-SWAP gate (CSWAP) and
is given by the matrix

UCSWAP = (1.18)

[N eNel o NeNo Nl
O R OO OO OO
S o OO oo o
O OO oo oo

OO O OO OO
[N eNeleoNeNBol S =
OO O OO+ OO
[ NeloeNoll =Rl

1.4 Quantum circuits

A quantum computation on n qubits requires sev-
eral quantum gates. We call the organization of
these gates a quantum circuit. A quantum circuit is
represented by a diagram in which the qubits are the
horizontal rails and, by convention, are organized in
a way the most significant qubit is on the top rail
and the least significant qubit is on the bottom rail.
Times flows from left to right in the quantum cir-
cuit, so the gates, following the graphic representa-
tion already discussed in this work, applied first are
shown more to the left than the applied later [4].

Quantum gates can be applied sequentially, in
parallel or conditionally. If several gates act upon
the same subset of qubits, then those gates must be
applied sequentially, i.e. in series, and their final
product is computed using the dot product. Sup-
pose we have three quantum gates A, B, C, if A acts
before B and B acts before C, their overall effect is
computed by their reverse order, C'e Be A.

When adjacent gates act on independent subsets
of the qubits, those gates are applied simultaneously
in parallel. The net effect of parallel gates is given
by the direct product of matrices, e.g. A ® B. An
important observation is that when a j-qubit quan-
tum gate U acts on a subset of the qubits and there
is no explicit operation on the other quibits, math-
ematically, this can be considered as parallel gate
operation in which an i-qubit identity gate ("no-
op") is applied to qubits 1 through 4, the U gate
is applied to qubits ¢ 4+ 1 through i + 1 + j, and a
k-qubit identity gate ("no-op") is applied to qubits
i+ 14 j through i + j + k. The final effect of them
is Ipi @ U ® Dok, where Iy is a 2! x 2! dimensional
identity matrix [4].

For cases where one subset of qubits (controls)
dictate what gate is to be applied to some other
subset of qubits (targets) is said the gates are ap-
plied conditionally. Mathematically, the operation
for composing gates is the direct sum of matrices.

The last thing to discuss in this work is that we
can measure the complexity of quantum circuit. It
can be characterize in: width, the total number of
qubits on which the circuit acts; size, the total num-
ber of gates the circuit uses; and length, the num-
ber of serial gate operations after having making
the circuit the most parallel possible. For a quan-
tum circuit to be considered efficient in performing a
computation, any of the complexity parameters has
to only grow as a polynomial function. For quan-
tum computing advance, the complexity needed to
achieve some computation must be significantly less
than the need to achieve the same computation



classically. Ideally the quantum circuit complex-
ity would grow as polynomial function in size and
the complexity of the corresponding classical circuit
would grow exponentially in size. Although this is
not yet possible, there are several research teams
striving to improve quantum computing and, hope-
fully, in the coming decades we will be able to see a
significant breakthrough in the area.

1.5 Conclusion

This work discusses what is a qubit and provides a
brief description of them, discusses quantum gates,
exploring the most important single quibit, two-
qubit and three-qubit gates and their mechanism,
and introduce the concept of quantum circuits and
what is their importance in the advance of quantum
computing . All concepts explored here are intro-
ductory to better understand quantum computing
and other subjects that are developing from it, and,
possibly are going to be hot topics of discussion in
the scientific and global community in the coming
decades.
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Schrodinger’s cat

Clara Andrade Sapio

Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, 13560-970 Sao Carlos, SP, Brazil

Abstract: “Schrédinger’s cat” it’s an expression
known by many since the first contact with Quan-
tum Mechanics. Because of the fact that this sub-
ject it’s familiar even for lay people, many aspects of
our comprehension about this theme are superficial,
even for those who had a basic Quantum Mechan-
ics course in the University: the majority does not
even know what is the history behind this paradox
and the infinity number of questions that resulted
from this experimental thought. In this work, will
be discussed the historical aspect behind this “prob-
lem” and the main hypothesis that has emerged to
explain what is the flaw in this experiment. Ques-
tions about the “Collapse Theory”, “Hidden Vari-
ables” and the “Many Words Interpretation” will be
discussed in the light of Quantum Mechanics, clari-
fying the historical, philosophical and mathematical
aspects behind the initial “cat” until the “modern
cats” that we heard about even nowadays.

2.1 Introduction

The Schrodinger’s cat is a paradox that can arises
from basically any quantum measurement. If we
take a Stern-Gerlach apparatus and perform a mea-
sure of the deflection of a spin indicator pointer, we
will see that depending on the initial state, the time
evolution operator results in a final state [¢(T))
that represents the superposition of two orthogonal
states [2]. Although superpositions are common in
Quantum Mechanics, it is weird to have a superpo-
sition of opposite directions to identify the position
of a pointer, so there it must be some theory to
explain what is the logical behind this result.

To resolve this question, Von Neumann postu-
lated that when a measurement is complete, the
superposition of positions collapses to a definite po-
sition and in this case of the pointer, each one of the
orthogonal states have equal probability to appear

as the final complete measurement.

At first, this hypothesis seems to resolve the prob-
lems through the introduction of this interpreta-
tion of Quantum Mechanics collapse. But many
questions arise from this postulate: What is a
"complete" measure? What is a measuring device?
There is a factor of human consciousness interfer-
ing in the collapse of a state vector to a definite
position?

To complete this set of questions and propose an-
other perspective of the problem, Schréodinger sum-
marize it with a thought experiment, enunciated as
it follows: “A cat is placed in a steel chamber, to-
gether with the following hellish contraption (which
must be protected against direct interference by the
cat): In a Geiger counter there is a tiny amount
of radioactive substance, so tiny that maybe within
an hour one of the atoms decays, but equally prob-
ably none of them decays. If one decays then the
counter triggers and via a relay activates a little
hammer which breaks a container of cyanide" [2].
So after an hour there is an equal chance of finding
the cat alive or dead. Mathematically, we have a
initial state |¢(0)):

[(0)) = Jundecayed) ® |untriggered)
® |unactivated) ® |unbroken) ® |alive)
(2.1)

After a time T equal to an hour, unitary evolution
transforms [¢(0))| into:

|(T)) = % |undecayed) ® |luntriggered)
® |unactivated) @ |unbroken) ® |alive)
—l—% |decayed) @ |triggered) ®
|activated) @ |broken) ® |dead)

(2.2)
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Figure 2.1: Schematic view of orthogonal alive and
dead states of the cat. Reference: [7]

In this case, the collapse postulate applies and the
cat has equal probabilities of being alive or being
dead or the cat is in a alive-dead state that does
not collapse?

In the orthodox Copenhagen interpretation of
Quantum Mechanics, we can quote Jordan when he
said [1] "observations not only disturb what has to
be measured, they produce it. In a measurement of
a position, the electron is forced to a decision. We
compel it to assume a definite position; previously
it was neither here nor there, it had not yet made its
decision for a definite position...". In the cat para-
dox, does it mean that the act of the observation
(or measure) forces the cat to assume a position, so
in this case we can be murdering the cat just by
looking at the steel chamber? If it does, how can
we define the consciousness of the measure and the
exact moment that it has some effect on the state
of the cat?

In an attempt to resolve all of the questions that
emerged from the Schrédinger’s cat paradox, will be
highlighted three possibilities of arguments, divided
and explained in the sections 3.2, 3.3 and 3.4.

2.2 Quantum Mechanics is in-
complete and there is col-
lapse

In this perspective, we will consider two main pro-
posals and give a short explanation with the main
ideas about each one.

2.2.1 Von Neumann’s Infinite

Regress/Chain

In contrast with Bohr’s approach, Von Neumann
considers the measuring apparatus as a quantum
system [1]. If a system S is initially in an eigen-
state of the measured observable A with eigenvalue
a, some pointer P of the measurement apparatus M
gives the position that obtains a as the result after

the interaction. But if the system S is initially in a
superposition of states, the linear Schrédinger equa-
tion predicts that the whole system S + M reaches
a linear superposition after the interaction and this
situation is described as quantum entanglement.

To solve this problem, one can use another mea-
surement apparatus M’ to determine the position
of the pointer of M, but the process repeats itself
and the linearity of Schrédinger equation leads to
another superposition. If we use a infinite num-
ber of measurement apparatuses M’, M", ..., we cre-
ate a infinite chain of superpositions created by
Schrodinger’s equation.

In practice, we know that we always observe only
one single result in a single experiment, i.e, linear
superpositions resolve themselves before they reach
the macroscopic world involving the measurement
apparatus, so it has to be a theory that break this
infinite Von Neumann’s chain (collapse). From his
observations, he concludes that is not possible to
formulate the laws of Quantum Mechanics in a com-
plete and consistent way without reference to hu-
man consciousness, because this human factor could
be entering the superposition and somehow forcing
the system to collapse and give a single result.

Wigner also noticed that we never find ourselves
in a superposition state, even though Quantum Me-
chanics sometimes predicts this fact. In this per-
spective and agreeing with Von Neumman’s ob-
servations, Wigner suggested that collapse occurs
whenever a conscious human being observes a mea-
suring device in a superposed state. A paradoxi-
cal situation expressed by Wigner is the classical
"Wigner’s friend", when we see this notions of col-
lapse of the state with the interference of the "hu-
man consciousness" [1].

The problem about this suggestion resides on the
fact that we don’t have a well defined concept of
what is this "collapse" and specially we don’t have
the a definition to the concept of "consciousness",
but, despite this open problems, we can say that
the theories that were explained in this subsection
agree with the fact that Quantum Mechanics is in-
complete and there has to be collapse of the states,
this being one of the forms to interpret Quantum
Mechanics in order to "resolve" the cat paradox.

2.2.2 Spontaneous Localization and
Continuous Spontaneous Lo-
calization

Spontaneous Localization (SL) and Continuous
Spontaneous Localization (CSL) are theories that
also agree with the fact that Quantum Mechanics



is incomplete and there is collapse. In both models,
extended states of matter spontaneously collapse to
localized states of size a ~ 10~°cm [2].

In the SL model, an extended state t(z) can
spontaneously localize to ¥ (z)g(xz — ), where g(z —
T) is a gaussian of width a centered at © = 7.
The probability of such a localization is consistent
with Born’s statistical interpretation of the wave-
function, given by the integral:

[ dalo@ygta - =) 23)

The answer of the SL model is that (z) sponta-
neously collapses at a rate of once in about 300 mil-
lion years on average (A = 10716). So, in practice,
the wavefunction for a single given particle never
collapses [2].

However, if we are working with a macroscopic
object such as a pointer of a measurement appara-
tus, the device contains many particles (= 1022). If
we take one particle of a pointer in a superposition
of two positions separated by a distance L > a, we
can express the initial state as:

_ b
V2

To encompass all particles, we can index each one

[4¥(0)) [10) +1L)] (2.4)

by 4 and let |1/)((]l)> and |1/)(LZ)> represent the complete
wave function of the i-th particle in the pointer when
the pointer position is 0 and L. Let us take the
terms |0) and |L) to be tensor products of these
one-particle wave functions. Then, we get:

6(0)) = jﬁ[@) ) + ® i @5)

If one of this i-particles spontaneously localizes,
its wavefunction collapses to a region of size a < L
and the new wavefunction could overlap with \¢OZ)>

or |1/1(Ll)>, but not both, so the other one would van-
ish. Considering 10?2 particles, the rate of this pro-
cess would be 1022 x 10716571 = 106571 — 10765
and this means that the collapse of any macroscopic
object would be very quick.

In the CSL model, the time evolution is continu-
ous rather than sudden. An operator p(z,t) repre-
sents the number of particles in a sphere of radius
a ~ 10~ %cm, centered at x at time t. The evolution
of a state vector depends on p(z,t) and also on a
classical field w(z,t) with a probability density for

each spacetime configuration of w(z,t). The evolu-
tion equation for |1, (t)), a multi-particle wavefunc-
tion could be expressed as:

0 i
a |ww(t)> = _ﬁH |¢w(t)>

55 [ deluwle ) = (e OF [u(0) - (20)

4a3 )\

This equation represents a nonunitary evolution
of the wavefunction to each configuration of w(zx,t).
In this way, the probability density that the initial
state vector actually evolves according to 1, (t) is
(1o () |1hey (1)) times the probability density for the
configuration of w(x,t).

To exemplify the CSL model, we can take H =
0 and consider a measuring device with a pointer
consisting of a steel needle, 1em long, with cross
section 2 x 10~3cm?. The operator p(x,t) acts in a
way that for a specific point of the pointer it yields
the total number of the particles (N) in the sphere
of radius a and zero elsewhere.

This way, to cancel the integral on equation 2.6,
we must have w(x,t) = 2AN at the position of the
undisplaced pointer, and zero elsewhere or at the
position of the pointer displaced by L, and zero else-
where. In the first case, [1/(0)) evolves to the state

10) = ), |z/16i)> and in the second case |1(0)) evolves

to the state |L) = &), |¢(LZ)> and the collapse takes
a time ¢ ~ 107185 to occur [2].

The CSL model is, so far, consistent with exper-
iment. In both models, there is a prediction that
the collapse of macroscopic or multi-particle system
will occur extremely rapid.

2.3 Quantum Mechanics is in-
complete and there is no
collapse

An attempt to solve the paradoxes that where
haunting classical interpretations of Quantum Me-
chanics is the theory that became known as "Hidden
Variables". This name refers to the parameters that
do not appear directly in the wavefunction, but are
the ones that complete the quantum description of
a system. Therefore, this theory also predicts that
the wave function is not a complete description of a
system and the "collapse" of a state is reinterpreted.

The greater rupture with the orthodox interpre-
tation of Quantum Mechanics is the fact that the
Hidden Variables Theory assumes that there are
some pre existing states and the measure does not



"force" the system to make a decision, being just
a way to reveal this pre existing properties of the
system. With this interpretation, we do not need to
worry about the definition of the human conscious-
ness because it is not something that affects directly
the measure of the observable.

The meaning of the wavefunction in this theory is
to determine the statistical distribution of the vari-
ables. In this statistical interpretation, the collapse
of the wavefunction is just a readjustment of the
probabilities and it goes like this: in the superposed
"dead-alive" cat state, the probabilities of the cat
being dead and alive are both % and when we ob-
serve or measure his state the probabilities change
to 0 (the state that is not observed) and 1 (the state
that is observed).

This theory is associated with the scientists David
Bohm and Louis de Broglie in what is called
"Bohmian mechanics" or the "Broglie-Bohm The-
ory". In Bohmian mechanics a system of particles
is described in part by its wave function, evolving,
as usual, according to Schréodinger’s equation. How-
ever, the wave function provides only a partial de-
scription of the system. This description is com-
pleted by the specification of the actual positions of
the particles [4].

In Bohmian mechanics the state of a system com-
posed of N particles is described by its wavefunc-
tion ¥(q) = ¥(q1,...,qn), & complex function on
the space of possible configurations ¢ of the system
together with its actual configuration @) defined by
the actual positions @1, ...,Qy of its particles [4].
To help us define this mechanics, we have two main
equations, the traditional Schrédinger time evolu-
tion equation (2.7) and the "Guiding Equation"
(2.8):

L Oy
lha — Hw (2.7)

e my PP

where my, is the mass of the k-th particle, Jy is the
gradient with respect to generic coordinates qp =
(Tk, Yk, zk) for the k-th particle. The right hand
side of this last equation represents the probability
current divided by the probability density (%)

As we can see, the two equations describing
Bohmian Mechanics are very similar to the ones
that are used in the orthodox interpretation of
Quantum Mechanics and they give final results pre-
dicted by Quantum Mechanics experimentally. One
of the interpretations that is different from the con-
cept in the orthodox interpretation is the notion of

collapse of the wavefunction: because of the incom-
pleteness of Quantum Mechanics description and
the need to consider the additional variables to fully
describe a system, the measures on an observable
just reveal pre existing states, so the wavefunction
does not "collapse" in the way that it is interpreted
as "forced to reduce its states to a well defined one".

2.4 Quantum Mechanics is
complete

After this conceptions about the incomplete-
ness of Quantum Mechanics, Everett and Wheeler
proposed that Quantum Mechanics is a complete
theory and their interpretation became known as
"Many Worlds Interpretation". What gave this
name to their theory is well exemplified by their
explanation about the Schrédinger’s Cat paradox:
both accounts (alive and dead) are real, because
each state represents a completely self-consistent
account that can be real simultaneously when we
consider more than a single world [2].

Figure 2.2: Schematic view of Schrodinger cat ex-
planation by theory of Many Worlds Interpretation.
Reference: [6]

To formalize this theory in mathematical ways,
we can define |s;) as a set of normalized states of
a system S and |d;) as a set of normalized states
of a system D. If we suppose that the states of S
and D are correlated, we can let D be a measuring
device and take |s;) as eigenstates of observables in
system S. If the inital state of a measuring device
is |dp) and we define |d;) as the measuring device
indicating that the system S is in the state |s;), we
get this relation:

|Si,d0> — |5i7di> (29)

In general S is in a superposition of states, so uni-
tary time evolution during the measurement leads



to a final state in a superposition too, so we can-
not define a state for S or D alone, just the relative
states to each other.

Zci ISi,d0> — ZCZ‘ ‘S“dl>

If we consider a index number m of identical sys-
tems S, S and n a index number of identical
measuring devices of D, we get:

(2.10)

5™, dg) = |5 d")

— |s; (2.11)
Two measuring devices, DV and D®) measure
the same observable on a system S, first D) and

then D®). The evolution is described by:
Zci |si,dél), d82)> — Zci s, dl(l),dg))

=3 eilsi,diY d) (2.12)

We can see that the two measuring devices al-
ways agree and, in general, any number of measur-
ing devices measuring the same observable on the
system S would always agree that S is in the state
|s;), i.e, relative to the state |s;), measuring devices
agree on an account for each i and according to the
Many Worlds Interpretation each of these accounts
are real.

If all the accounts are real, what do the coeffi-
cients ¢; represent?

If we assume that a measuring device D measure
the same observable in many identical systems pre-
pared in the same initial state we can extend our
notation and write:

Z CiCj... \851), s§-2), ey dp) = Z CiCj... \s§1)7 s§-2), ey d
ij... ij...

(2.13)

The right side in equation 2.13 is a superposition
of terms representing all the systems S(™) in definite
states with the measuring device indicating those.
Each term corresponds to a definite account of the
measurement and they are incompatible with all the
other accounts.

The square of the absolute value of the coeflicients
in equation 2.13, according to the conventional in-
terpretation of Quantum Mechanics represents the
probability that the system S() is in the state |s§1)>7
S is in the state |s§2)> and so on, but what this
coefficients means if there is no collapse?

To answer this question, Everett interpreted
equation 2.13 as a measure of the account that has

ij...
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S in the state |s§1)>, S is in the state |s§-2)) and
so on, so the correspondence between worlds and ac-
counts is not one-to-one, but many-to-one [2]. The
measure makes the link between coefficients ¢1, cs,...
to probabilities |c1|2, |ca|?,... of the final states.

To summarize it, if the probabilities of events
FE,, Es, Es, ... are p1, p2, D3, ... respectively, then the
probability of a sequence of uncorrelated events
E;, E;, Ey,... is p; - pj - Dk,.... In the scenario
described by the systems S and D with coeffi-
cients c;,cj,.., the sequence of events has a mea-
sure |¢;? - |¢j|? - |ek/?, ... and if we randomly choose
a world, the probability of this sequence equals its
measure and the probability that a measurement on
a system S(™) yield |s£m)> in that world is |¢;|?
as the conventional interpretation predicts.

In conclusion, the Many Worlds Interpretation
implies that Quantum Mechanics is complete and
does not need a theory for collapse of the states, so
we can use this explanation in the case of the cat
paradox using this interpretation.

, just

2.5 Conclusion

This work’s intention was to show that
Schrédinger’s cat paradox has a much deeper in-
terpretation that just "a superposition of states in
which the cat is both alive and dad". All of the
discussions were based on the initial problem: How
can we explain the thought experiment of the cat
in the box, and other ones like a pointer in or-
thogonal states, since in practical experience we al-
ways see a single state and not a superposition like
the time evolution equations of Quantum Mechanics
predicts?

A large number of theories were developed in
an attempt to prove or disprove the completeness
of Quantum Mechanics, involving other postulates
like the collapse of the wavefuncition. All of the-
ses theories are somehow giving an explanation for
the Schrodinger cat, but many questions are still
open for another discussions: How can we define
collapse? Do systems have pre existing states and
do we just measure them to reveal it or our observa-
tions (or consciousness) in fact produce the state?
How can we "access" other worlds and demonstrate
concretely that multiple exclusive accounts are all
real?

Despite the fact that the experimental thought
of Schriodinger cat was considered absurd even by
its creator, we still hear a lot expressions like
"Schrodinger cat states" even nowadays. Initially,
the cat was a symbol of an impossibility or even



a detection of a flaw in Quantum Mechanics the-
ory, but moderns cats ressignified this symbol and
today we can actually observe and generate (even
for macroscopic systems) entangled states or coher-
ent superposition of states, named "Schrédinger cat
states" [5].

In conclusion, we can say for sure that this para-
dox is still alive and open for new discussions.
Schrodinger cat went from an absurdity and a chal-
lenge for the interpretations of Quantum Mechanics
to a ressignified concept that is useful in many re-
searches nowadays, characterizing systems with en-
tangled states.
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Abstract: Um atomo de Rydberg é um atomo
excitado para um nivel de energia elevado, no
qual atribuem algumas propriedades interessantes
se comparados ao estado fundamental. Podemos
destacar algumas dessas propriedades como uma
forte interacao dipolo-dipolo entre atomos de Ry-
dberg proximos, grandes tempos de vida na ordem
de microsegundos, a interacao térmica diminui com
o aumento do ntimero quéntico principal, utilizacao
em computagao e informagao quéntica, etc. Neste
trablaho, propomos uma revisao teérica e uma apli-
cacao desse atomo.

3.1 Introducgao

Atomos de Rydberg foi descoberto pelo fisico
sueco Johannes Rydberg ( 1854-1919) por ter estu-
dado as linhas espectrais e transagoes atomicas do
atomo de Hidrogénio e forneceu muitas ferramen-
tas para o estudo fundamental da matéria, e dentre
elas, podemos destacar: propriedades e interacoes
atomicas, colioes e transferéncia de energia, e uti-
lizacao na computagao e informagao quantico. Os
atomos de Rydberg podem ser qualquer 4tomo que
sao excitado para um nivel de energia alto. O fato
é saber em qual nivel de energia poderia chegar.
No entanto, tem estudados recente de excitagao ex-
perimental, que atingiram estados cujo o n esta em
torno de 200 e em algumas observacoes atronomi-
cas existe evidéncias de estados na mesma ordem
em estrelas.

A série de Rydberg foi descoberta como uma
explicacdo empirica para as linhas espectrais do
hidrogénio atémico e permitiu que a energia de lig-
agao fosse expressa como:

R,

(3.1)

onde R, é um paradmetro de ajuste e n é um
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numero inteiro. Pouco tempo depois, o desenvolvi-
mento do modelo de Bohr mostrou que R, nao era
apenas um parametro de ajuste, mas poderia ser
calculado a partir de constantes fundamentais:

meet

R, = 7> .
Y 8e2hi?

(3.2)

3.2 Teoria

Atomos de Rydberg, a principio, pode ser qual-
quer elemento da tabela periédica, porém sao usa-
dos elementos da familia 1A da tabela periodica,
os alcalinos, pois apresentam um ftnico elétron
na cama de valéncia e se acemelham ao &atomo
de Hidrogénio, e por uma questao tecnoldgica sao
facilmente manipulaveis por lasers disponiveis at-
ualmente, entao, podemos escrever a equacao de
Schrodinger:

<21M \Vai +V(r)) U(r,0,0) = EV(r,0,¢). (3.3)

onde p é a massa reduzida do elétron, V(r) =
2 ~ s .
—Z—=~—er, 0 e ¢ sao as coordenadas esféricas.
47me)0r ’
Considerando que nao exista nenhuma forga externa
a equacao (3.3) pode ser resolvida por separagao de
variaveis da seguinte forma:

U(r,0,6) = RV (6, 6). (3.4)

onde Y;™ (6, ¢) séo os harmoénicos esféricos que de-
pende apenas do momento angular do estado de Ry-
dberg e a projecao ao longo do eixo de quantizacao
m e R(r) é a fungao radial. Portanto, substituindo
a equacao 3.4 na equagao 3.3, podemos encontrar
toda informagao sobre a coordenada angular e ra-
dial da particula. A soluc¢do da parte radial é dada
por:



_ =DV s er 2ttt

R = =l e G B ),

(3.5)

onde n é o nimero quantico principal, { = 2Z/n

e Lilill os polinémios de Laguerre. A solucdo para
a equacao angular é dada por:

2L+ 1)(I—m)

|
mo_ Cpm imeo
Y, Tl + )] P/ (cos(0))e"™?.  (3.6)

onde [ é o nimero quantico relacionado ao mo-
mento angular orbital, m o ntimero quantico rela-
cionado ao campo magnético e P/™ os polinémios de
Legendre. Logo, encontramos a descri¢gao completa
de um estado ayémico para o dtomo de Hidrogénio.
E fundamental ressaltar que ao reescrevermos as
equagoes utilizando a equacao 3.4, a componente
radial incorpora todas as informagoes do potencial,
o qual, devido a separacao de variaveis e ao sistema
de coordenadas adotado, se torna um potencial efe-
tivo que depende do ntimero quéntico 1, de acordo
com:

R+ 1) e?
202
Que incorpora o termo eletrostatico, que natu-

ralmente é atrativo, além de um termo centrifugo
repulsivo, que depende do momento angular 1. Ao
conhecer o novo potencial e as funcoes de onda,
podemos, por fim, determinar as autoenergias do
elétron da seguinte maneira:

Vers = (3.7)

dmegr’

petz? 1
2h2(4meg)2 n?’

Esse resultado do d4tomo de hidrogénio é de ex-
trema importancia, pois nos auxilia a compreender
a descrigao dos atomos de Rydberg, os quais podem
ser facilmente tratados como atomos hidrogenoides.
A relagdo matematica entre eles e o Hidrogénio
é conhecida como "defeito quéntico" 3.2.2. Essa
grandeza estd relacionada com a interacao do
elétron mais externo com a nuvem eletronica (que
nao existe no atomo de hidrogénio), a qual protege
o nucleo positivo, resultando em uma diferenga de
fase entre as funcoes de onda do hidrogénio e as do
atomo de Rydberg.

E, = (3.8)

3.2.1 Funcgoes de onda de Rydberg

Para obter as fungoes de onda dos atomos dis-
tintos do Hidrogénio em estados de Rydberg, é
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necessario a utilizacao de métodos numéricos, uma
vez que a solugao analitica se torna viavel devido a
complexidade do potencial e ao niimero de particu-
las envolvidas. Em especial, para o Rb8®, é utilizado
o algoritimo conhecido como Numerov, que foi in-
corporado em um programa computacional gratuito
denominado Radial [2]. A Figura 3.1 exibe, na sub-
figura (a), uma imagem comparativa entre o 4tomo
de hidrogénio (H) e um atomo de Rydberg de Rubi-
dio (Rb), juntamente com as fun¢des de onda ra-
dial R(r) dos dois atomos. Nas subfiguras (b) e
(c), respectivamente, sdo apresentadas as fungoes
de onda radial R(r) para o mesmo estado eletronico.
15051 /2)-

a) Préton b)

| =N

S
Elétron [E"

| Rubidio
Niicleo H

—
—

IAAAAA A
[IUAARAAAA

é Nuvem eletrnica. 0

Figure 3.1: Funcao de onda radial para o estado
15051 /2). Fonte:[2]

1000 2000 3000

r(ao)

4000 5000

A Figura 3.2 (a), é exibido um grafico compar-
ativo entre o potencial efetivo de um atomo de
Hidrogénio e o potencial modificado (51) (b), am-
bos para | = 0, utilizados no calculo das fungoes de
onda para os estados de Rydberg do Rb3°.

5 10 15 20
r (&)

r{ag)

Figure 3.2: Comparacao entre os poténciais atomi-
cos do Rb®*(b) e H (a). Fonte:[2]

Como resultado da interacao entre o elétron e a
nuvem eletronica, também ha uma alteragao nos
niveis de energia dos d4tomos. Essa modificagao esta
diretamente ligada ao defeito quantico (3.2.2), que
por sua vez é dependente do momento angular [ do
estado em consideracao.



3.2.2 "Defeito Quantico"

Os 4atomos de metais alcalinos sao semelhantes
ao hidrogénio; um tnico elétron de valéncia orbita
o nicleo em um potencial Coulombiano 1/r. Entre-
tanto, ao contrario do a&tomo de hidrogénio, muitos
mais elétrons também orbitam o ntcleo em raios
mais curtos; como resultado, o elétron mais externo
geralmente vé uma carga nuclear blindada. Estados
de baixo momento angular (I < 4) desviam ainda
mais do modelo hidrogenoide simples: a érbita do
elétron de valéncia é altamente eliptica e pode pene-
trar nas camadas internas de elétrons. O elétron de
valéncia esta exposto & carga nuclear nao blindada
de um lado e a repulsao Coulombiana dos elétrons
internos do outro lado, experimentando um poten-
cial do nucleo muito diferente em distancias curtas.
Ao mesmo tempo, os elétrons de camada fechada
podem ser polarizados pela presenca do elétron de
valéncia. Esses dois efeitos combinados aumentam a
energia de ligacao dos estados de Rydberg de baixo
l, em relacao aos estados hidrogenoides correspon-
dentes. A energia de ligacao dos metais alcalinos
pode ser expressa como:

Ry

(1 — 0nij)? ’

onde dy,;; € o defeito quantico. Agora podemos es-
crever um numero quantico principal efetivo como
n =n—2oy ; para os estados de Rydberg de metais
alcalinos. Os valores dos diferentes defeitos quan-
ticos para Rb foram obtidos por meio de medicoes
espectroscopicas [2] e podem ser calculados através
da formula:

E=-— (3.9)

0o
(n—dg)?

0. 3
2 +.Sal’.

= 0o+ (1 —d0)2 1

- (3.10)

anlj

sendo §; depende tanto de [ quanto de j e a, é

uma correcao devido & polarizabilidade do nicleo
atomico para [ > 5.

Estado do O
InSi2)  3,13118 0,17
InPyj9)  2,65488 0,29
InPsp)  2,64167 0,295
InDs/o) 1,34809 -0,6286

Table 3.1: Valores dos pardmetros dg e d,. Fonte:[2]

Ao ter conhecimento do defeito quéntico da es-
pécie atomica em questao, é possivel obter as en-
ergias de todos os estados aplicando alguns dados
da Tabela ?? na Equagao 3.10 e posteriormente na
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Equacao 3.9. A Figura 3.3 ilustra um diagrama de
energia que permite a comparagao das energias en-
tre diferentes estados n,lej do Rb3®. A tltima col-
una representa os niveis energéticos do atomo de
Hidrogénio para fins de comparacao.

Diagrama de Energia do Rubidio
0y

i

105
98

&

!
IS
k3
3

~800)

Figure 3.3:
Fonte:|2]

Diagrama de energia para o Rb®.

Usando a teoria do defeito quantico, é possivel
encontrar outras caracteristicas importes como o
tempo de vida, energia de ligagao do elétron, campo
elétrico de ionizagao, raio orbital, momento de
dipolo, polarizabilidade. A tabela 77 mostra os fa-
tores das principais propriedades dos estados de Ry-
dberg.

Propriedade n* =mn— Onj
Energia de ligacdo do elétron n*—2
Compo elétrico de ionizagao n 4
Raio da 6rbira n*?
Momento de dipolo n*?
Tempo de vida n*3
Polarizabilidade n*7

Table 3.2: Propriedades dos estados de Rydberg
com o namero principal quintico efetivo. Fonte:[2]

3.3 Propriedades

3.3.1 Raio atdémico

O raio atdomico 14, é facilmente determinado,
encontrando a posicao de maior probabilidade na
fungao de onda radial |R(r)|?>. Sabendo o raio
atdmico, a secao de choque geométrica pode ser en-

contrada diretamente da seguinte maneira o = 772,



3.3.2 DPolarizabilidade

Também podemos calcular a polarizabilidade, e
pode ser obtido pela funcao de onda total, através
do momento de dipolo das transicoes atomicas que
pode ser calculado da seguinte maneira:

(', 1, 5| (er) In,1, 5)

—e/wn v (0. 8) P51, 0, )

(3.11)

Encontrando o momento de dipolo, podemos encon-
trar a polarizabilidade de um estado. A polarizabil-
idade as de um estado qualquer é dado por:

base s .
, n, gl (er)|n,d,j)
wintgy=z WLl
nl,l/,j,;ﬁn,l,j n,l,j n g
(3.12)

sendo E,;; é a energia do estado |n,l,j). Na
figura 3.4 (a), é apresentado um grafico com o cal-
culo do momento de dipolo via equagao 3.11 entre
o primeiro estado excitado 5P/, para outros es-
tados de Rydberg. Em (b) apresenta o calculo da
polarizabilidade.
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Numero quéntice principal (n) Numem quantice principal (n)

Figure 3.4: Momento de dipolo e polarizabilidade.
Fonte:[2]

3.3.3 Interacoes de longo alcance dos
Atomos de Rydberg

As interacoes de longo alcance sao conhecidas
como alteragoes nos niveis atémicos devido & prox-
imidade de outros 4tomos. Essas interagoes ocorrem
devido & sensibilidade dos 4tomos ao ambiente ex-
terno, como sua alta polarizabilidade discutida an-
teriormente. Para as interacoes de longo alcance, os
atomos de Rydberg sao tratados como dipolos elétri-
cos. Essa interacao entre os atomos pode ser de-
scrita como uma interagao cléassica entre dois dipo-
los, P e po e a formula é escrita abaixo:

Vaa(y = PLP2 (1 R) (32 )
TR s

(3.13)

onde R é o vetor> Agora considerando a interagao
nao classico, o dipolo elétrico pode ser escrito como

15

um momento de dipolo de transicao entre os estado
¥ e . entdo, p= (Y|er|y ). Logo, o potencial é
dado por:

—

Vaa(R) ZZ (Wil e [105) (| €7 |afy) -
ij

(3.14)
onde os indices i e j representam o estados do atomo
1 e os indices k e [ os estados do atomo 2.

Energia (GHz)

Distancia Interatomica (um)

Distancia \nlelalum\ca (pm)

Figure 3.5: Figura (a) o potencial foi calculado
considerando apenas a interagao de dipolo-dipolo,
e no da direita (b) considerando também dipolo-
quadrupolo e quadrupolo-quadrupolo. Fonte:|2]

3.3.4 Efeito Stark

A alta polarizabilidade dos atomos de Rydberg
faz com que eles sejam muito sensiveis a campos
elétricos externos. Essa interacao entre um atomo
e um campo elétrico é conhecida como efeito Stark
?7?7. Uma das principais consequéncias dessa inter-
acao é a modificagao dos niveis de energia internos
do 4tomo, levando & quebra da degenerescéncia das
projecoes do momento angular |mji. Isso significa
que os diferentes estados do atomo, que antes tin-
ham a mesma energia, agora terao energias difer-
entes devido & presenca do campo elétrico.

Na figura 3.6, s@o apresentados exemplos de cal-
culos do efeito Stark para estados proximos ao es-
tado 5057 /2 nas subfiguras (a) e (b). A subfigura
(c) mostra um mapa que ilustra os estados 37D3/2
e 37D5/2 em termos das regides de campo e energia
que podem ser experimentalmente acessadas.

Existe outras propriedades dos atémos de Ryd-
berg como o tempo de vida entre outros, porém nao
serd mencionadas neste trabalho. A proxima secao
abordard uma aplicacao dos atémos de Rydberg.
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Figure 3.6: Efeito Stark. Fonte:[2]

3.4 Experimento

As interagbes entre atomos de Rydberg desem-
penham um papel importante na investigagao de
propriedades intrinsecas da matéria em baixas tem-
peraturas. Essas interagoes sao fundamentais para a
compreensao de interacoes de longo alcance, colisoes
atomicas, formacao de moléculas e também para a
manifestacdo macroscopica de fendomenos atomicos,
como as interacoes de van der Waals e dipolo-dipolo.
Adicionalmente, as interagoes entre atomos de Ry-
dberg sao de extrema importancia para impulsionar
o avanco da computacao quantica e outros estudos.
Basicamente esses sistemas dependem do fenémeno
de bloqueio dos 4tomos de Rydberg, que é uma lim-
itagao na densidade populacional desses d&tomos de-
vido & forte interagao entre eles. Porém, essas mes-
mas interagoes podem resultar na degradagao da co-
eréncia em amostras atomicas. Essas interacoes po-
dem trazer tanto beneficios quanto desafios em sis-
temas atomicos, portanto, é de extrema importancia
compreendé-las adequadamente.

O experimento realizado por [1], estuda a
anisotropiia da interacao dipolo-dipolo, e portanto,
compreendendo o efeito de bloqueio de Rydberg es-
pecificamente em uma amostra atomica confinada
e mantida em uma armadilha 6ptica de dipolo
tipo QUEST. O experimento comega utilizando
uma armadilha magnética otica (MOT) que ¢é uti-
lizada para carregar a armadilha QUEST, assim
produzindo uma amostra atémica de 10% atomos
como uma densidade de 10*2tomos/cm3. Toda in-
formacao sobre a configuragao experimental pode
ser encontradas em [3,4]. Para excitar o estado
505 — 1/2 & utilizado pulsos de laser [1]. Todos
os campos elétricos utilizados sao gerados por um
sistema de 8 eletrodos que sao independentemente
controlados, seguindo a seguinte configuragao 77.
Os elétrons sao detectados usando um detector de
placa micronal(MCP), fornecendo assim uma média
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de 300 atomos de Rydberg.

Durante a sequéncia de pulsos de laser, a pop-
ulacao atomica retida na QUEST diminui, per-
mitindo a investigacao da populacao do estado de
Rydberg 5057 /2 em relagao & densidade atomica do
estado fundamental. Para analisar o decaimento
da amostra, utilizou-se a técnica de imagem de ab-
sorgao seletiva de estados. Entao, para estados n.S
sem utilizar o campo elétrico, os atomos interagem
apenas por meio da interagao de van der Waals,
de modo que o potencial é puramente repulsivo e
isotropico. Na presenca de um campo externo,os
adtomos se polarizam e a interacao muda para um
potencial efetivo dependente do angulo [1]. Este po-
tencial. O primeiro resultado foi obter um espectro
Stark. Na figura 3.7 (a) é mostrado uma populagao
normalizada de 505/, em funcao do campo con-
tinuo A480 = —151M Hz e combinando um espec-
tro semelhante para diversos valores A480, obtem o
espectro Stark 3.7(b)

1.0
0.8
0.6

0.4

Dyeq (MHz)

Electric Field (Vicm)

Figure 3.7: a) Populacdo no 505,52, b) Espectro
Stark. Fonte:[2]

Os eletrodos utilizados foram calibrados por meio
de varios mapas Stark préximos ao estado 505 /5 e
comparados com os valores tebricos em cada direcao
(X, Y e Z). Isso permitiu obter a posi¢ao de campo
zero e o fator de calibragao para cada coordenada.
Antes de cada medigdo do bloqueio de Rydberg em
um angulo especifico, foi realizada uma varredura
do campo para verificar a posicdo da ressonincia
desejada. Ajustando o campo nessa ressonancia, a
amplitude do campo foi garantida para todos os an-
gulos dentro de 20 mVem™1. Durante a variagao do
angulo, pequenas variacoes nas voltagens aplicadas
nos eletrodos foram feitas para manter a ressonan-
cia. Simulagbes computacionais indicaram que essas
variagoes de voltagem resultaram em um erro angu-
lar inferior a 4.

A Figura 3.8, que apresenta um grafico da popu-
lagao do estado 50S1/2 em relagao a densidade dos



atomos no estado fundamental para diferentes ori-
entacgoes de campo. O campo aplicado possui uma
amplitude de 2,38 V em™! e A480 = —151M H 2.

Para comprovar a consisténcia dos resultados
obtidos com o bloqueio de dtomos de Rydberg, foi
aplicado um modelo cléassico de esferas rigidas no
estado estacionario. KEsse modelo é um dos mais
simples disponiveis na literatura, porém, contém as
principais informagoes fisicas e descreve de forma
adequada o efeito observado.

Para comparar a dependéncia angular experimen-
tal da populagao 505/, com o modelo de esferas
rigidas de bloqueio, plotamos o ntmero médio fi-
nal de atomos de Rydberg em fung¢éo do angulo do
campo elétrico, como mostrado na Figura 3.9.
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Figure 3.8: a) Populacdo no 505 /,. Fonte:|2]
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Figure 3.9: Populagao do estado 505 /2 em fungao
do angulo. Fonte:|2]

Em outro experimento, foi realizado um estudo
para explorar a capacidade de anular as interacoes
dipolo-dipolo. A populagao do estado 505/, foi me-
dida em relagao & densidade atémica do estado fun-
damental para diferentes campos elétricos no dngulo
maégico. As amplitudes dos campos elétricos foram
escolhidas de forma a evitar cruzamentos entre o
estado 5057/ e as linhas hidrogénicas do manifol.
Diferentes amplitudes de campo resultam em uma
mudanca na forca de interagao e, consequentemente,
na populagao final de dtomos de Rydberg. No en-
tanto, como foi demonstrado anteriormente, no an-
gulo magico, a interacao dipolo-dipolo é suprimida,
o que implica que as curvas de populagao devem ser
independentes da amplitude do campo. Esse com-
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portamento pode ser observado na Figura 3.10.

Normalized 505 population
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Figure 3.10: A populacao do estado 505;,2 em
funcao da densidade dos atomos no estado funda-
mental em fungdo do campo. Fonte:[2]

3.5 Conclusao

Mostramos que os dtomos de Rydberg possuem
algumas propriedades como uma forte interacao
dipolo-dipolo entre &tomos de Rydberg proximos,
grandes tempos de vida na ordem de microsegun-
dos, a interagao térmica diminui com o aumento
do ntmero quantico principal, utilizacao em com-
putagdo e informacdo quéantica, etc. Na secéo
3.4 apresentamos alguns resultados do experimento
feito por [1]. Podemos chegar a seguinte conclusao,
a interagao entre dois a&tomos de Rydberg é mais in-
tricada do que o potencial simplificado com base no
parametro de interagao derivado do efeito Stark em
atomos individuais. Esse potencial simplificado é
valido apenas em distancias longas e nao no regime
de bloqueio. Em um estudo recente, foi compro-
vado que o carater multinivel da interacao, devido
a presenca de estados de momento angular elevado,
é crucial para calcular curvas de potencial precisas e
interpretar experimentos de interacao de Rydberg.
E o modelo de bloqueio de esferas rigidas é bas-
tante simplificado e nao coincide com os resultados
experimentais em densidades mais elevadas. Em um
estudo anterior, foi observado que, mesmo quando
o modelo de bloqueio atinge sua saturagao em altas
densidades, a populacao de dtomos de Rydberg me-
dida experimentalmente continua a aumentar grad-
ualmente.
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Abstract: Formulado em 1913 por Niels Bohr,
o conceito de salto quéntico surgiu para identi-
ficar as transicoes descontinuas dos elétrons entre
niveis energéticos atomicos e tornou-se foi alvo de
intensa discussao entre duas das principais vertentes
de pensamento da mecanica quantica. Tal fen6meno
teve sua primeira observacao experimental em 1986,
através da espectroscopia de um tnico fon, demon-
strando alta concordancia com as ideias teoricas
propostas por Bohr. Apesar de varios outros ex-
perimentos posteriores 4 1986 também fornecerem
resultados discretos para as transicoOes, o presente
texto buscara expor as diferentes interpretacoes ao
longo da histéria, bem como tratamentos numéri-
cos computacionais para tal fendomeno, permitindo
a formagao de uma visao mais generalista sobre um
assunto de nivel tao fundamental dentro da fisica.

4.1 Introducao

O desenvolvimento da Mecanica Quéntica no
século XX e seus inumeros efeitos, propiciaram
uma revolucao na compreensao sobre os proces-
sos de medicao. Em particular duas vertentes de
pensamento ganharam alta relevancia dentro desse
cendrio: uma com visao puramente probabilistica
(“interpretacao de Copenhague”) - desenvolvida por
Niels Bohr e Werner Heisenberg - e outra seguindo
o caminho da mecénica ondulatéria, apoiada por
Erwin Schrodinger e Albert Einstein.

Uma das mais intensas discussoes entre as duas
interpretagoes surgiu em razao da proposta de Bohr
para as transigoes entre niveis energéticos atomi-
cos. Em sua andlise, tais processos aconteceriam
de forma instantdnea e probabilistica através dos
denominados saltos quénticos, indo totalmente na
contramao das ideias ondulatoérias - que defendiam
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a existéncia dos niveis energéticos em termos da su-
perposicao de modos vibracionais. Em meados de
1980, apos o desenvolvimento dos lasers, detecgoes
experimentais dos saltos quénticos foram conduzi-
das, demonstrando uma correlacao quase direta en-
tre os resultados e a interpretagao de Bohr.

Nesse ambito, considerando o carater fundamen-
tal dos saltos quénticos e as divergéncias entre os
dois tratamentos para a mecanica quantica, o pre-
sente trabalho buscard abordar a histéria desses
eventos, os processos experimentais e teorias empre-
gadas em suas primeiras medigoes e por fim, uma
maneira intuitiva de simular computacionalmente
os saltos quanticos para um sistema de dois niveis
através do método de Monte Carlo, buscando aden-
trar em todas as etapas nos méritos de cada uma
das interpretacoes.

4.2 Contexto historico

O conceito de saltos quanticos surgiu com as
analises de Niels Bohr sobre a estrutura atémica
da matéria em 1913 [1]. Através de seus estu-
dos sobre so espectros de emissao de determinados
gases, Bohr concluiu que os elétrons de um atomo
poderiam ocupar diferentes valores discretos de en-
ergia e, mediante a processos - absor¢ao, emissao
espontanea e emissao estimulada -, transitariam de
forma abrupta entre esses niveis energéticos. Tais
transicoes instanténeas foram denominadas saltos
quanticos e pavimentaram caminho para intensos
debates ao longo do século XX.

Com o desenvolvimento da mecénica quantica on-
dulatoéria, comegaram a surgir questionamentos so-
bre o conceito dos saltos quanticos. A interpretagao
de Copenhague para a mecénica quéntica, defen-
dida por Bohr e Heisenberg, trazia aos saltos um



carater aleatério e instantineo, entrando em con-
flito as visoes de fisicos como Schrédinger e Ein-
stein - que associavam ao fené6meno uma descrigao
para niveis energéticos dos elétrons em termos dos
modos de vibragao fundamentais [2]. Indo em con-
tramao com as ideias de Schrodinger, o modelo pro-
posto Bohr também nao previa a possibilidade dos
niveis de energia existirem como superposi¢ao coer-
ente de estados, restringindo a ocorréncia de saltos
quanticos em sistemas cuja evolugao temporal se de-
senvolvesse de tal forma e norteando uma evolucao
energética tal como exemplificado na Fig. 4.1.

ENERGY

Ea‘

Ez'_'"'l

E1-

TIME

Figure 4.1: Evolucao temporal da energia no modelo
de Bohr - ilustracao intuitiva para os saltos quanti-
cos [3].

As discordancias entre as visoes geraram debates
calorosos entre Bohr e Schrédinger evidenciados,
por exemplo, pela seguinte declaragao feita por
Schrédinger: “If all this damned quantum jumping
were really to stay, I should be sorry I ever got in-
volved with quantum theory” [3] e a consequente
resposta de Bohr: “But we others are very grateful
to you that you did, since your work did so much to
promote the theory”.

Apesar da grande aceitagdo de intimeras nogoes
colocadas pela mecénica quéntica ondulatéria, o
surgimento da tecnologia de captura de fons por
Hans Dehmelt e colaboradores [5] e a observagdo da
fluorescéncia induzida por laser em um tnico 4tomo
possibilitaram uma interpretagao quase direta em
termos das visoes de Bohr para os saltos quanticos.
Nesse sentido, o topico a seguir buscara discutir as
primeiras observagoes desse fendmeno, a teoria por
tras desse experimento e uma anélise geral sobre
seus resultados.

4.3 Observagoes experimentais

Atrelado ao desenvolvimento da técnica de cap-
tura de fons [5] - utilizando lasers sintonizados
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pouco abaixo da frequéncia de ressonancia atémica e
induzindo forgas de radiagao impedindo a translacao
do ion - as possibilidades de estudar espectroscopia
em sistemas quase ideais foram atingidas, evitando
distor¢oes por desvio Doppler ou processos colision-
ais. Dentre os efeitos estudados nesses sistemas,
a fluorescéncia telegrafica atdémica ganhou enorme
destaque, uma vez que permitiu avaliar a dinAmica
transicional em um sistema quéntico de trés niveis
e seus respectivos saltos.

4.3.1 O sistema de trés niveis e a flu-
orescéncia telegrafica

Parte da relevancia em estudar os sistemas de trés
niveis, encontra-se diretamente relacionado a teoria
dos processos de medigao dentro da mecénica quan-
tica. Segundo John von Neumann [11], os processos
de medida de um estado puro seguiriam dois pas-
sos: 1° - a projecao do operador do estado medido
em termos dos autovetores da base do medidor e
2° - a observacao de um dos possiveis autovalores
do aparato de medi¢do. A utilizacdo de um sis-
tema de trés niveis possuindo uma transicao fraca -
representando a amostra - e uma forte - correspon-
dendo ao medidor seria entao uma forma simplifi-
cada de avaliar algumas das principais caracterfs-
ticas desses processos de medicao e serd abordada
exaustivamente ao longo do texto.

Consideremos um sistema quéntico de trés niveis
em configuracao V, tal como mostrado na Fig.
4.2, com uma transi¢do forte (detector) e outra
fraca (amostra) - por exemplo a transi¢ao dipolar
S1/2 — P12 e a transigao quadripolar Sy, — Dy /o
do ion de bario, respectivamente. Sob a incidéncia
de radiacao por um laser CW, ocorrem as possibil-
idades de transicdo entre niveis 0 +— 1 (forte) e
0 +— 2 (fraca), com alta prioridade para transigao
forte. Assumindo agora a existéncia de um segundo
laser responsavel por excitar as transigoes fracas, o
sistema quéntico ira preferencialmente realizar tran-
sicoes 0 -1 — 0 — 1 — 0..., podendo em algumas
das excitagoes, transitar entre 0 — 2 e permanecer
nesse estado com tempo de vida muito maior que os
outros - denominado estado metaestavel - até decair
novamente para o estado fundamental.

Devido ao baixo tempo de vida (7«1s) das tran-
sicoes fortes, todo processo de desexcitagao ocorre
muito rapidamente e a fluorescéncia coletada teria
um sinal esperado praticamente continuo. Entre-
tanto, observa-se que a existéncia de um estado
metaestavel com tempo de vida muito maior que o
tempo de vida da transicao forte, permite um "ar-
quivamento" do elétron no estado 2 - induzindo a
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Figure 4.2: Estados energéticos para um sistema de
trés niveis com uma transigao fraca e uma forte,
configuragao V [3].

manifestacao de periodos de escuridao na deteccao
de fluorescéncia. Dessa maneira, sao obtidos perio-
dos luminosos intercalados de periodos aleatérios
sem luz, caracteristicos da fluorescéncia telegrafica,
possibilitando a utilizagao desse sinal com um mon-
itor direto para os saltos quanticos [3].

Vale ressaltar que, apesar de muito interes-
sante, o processo citado anteriormente sofre acao de
efeitos indesejados uma vez que, em razao dos dois
lasers induzirem simultaneamente a transigao fraca
e forte, sao produzidas perturbacgoes na coeréncia
da transigao fraca - movida pela dindmica das tran-
si¢oes fortes. Uma solu¢ao para tal problema foi
proposta por Dehmelt [11], idealizando o chamado
amplificador quéntico, que alternaria a irradiacao
do laser da amostra com o laser do detector, cor-
rigindo esse problema.

4.3.2 Observando os saltos quanticos
pela primeira vez

A primeira observacdo do fenémeno dos saltos
quénticos foi realizada por Warren Nagourney, Jon
Sandberg e Hans Dehmelt em 1986 [4], por meio
da técnica de fluorescéncia telegrafica para um ion
de Ba'. Para melhor compreensio do experi-
mento, consideremos o diagrama da Fig. 4.3, sob
a incidéncia de um feixe laser, um fon de Ba™
inicialmente no estado 525, /2 pode migrar para
62P; /2, resultando na possibilidade de transigao en-
tre 62P1/2 — 5251/2 e 62P1/2 — 52D3/2. Em vir-
tude da alta taxa de decaimento para 52Dj /2, faz
se necessario o uso de um segundo laser excitando a
transicao 62P1/2 — 52D3/27 impedindo que a fluo-
rescéncia de ressonéncia seja desligada apos a emis-
sao de poucos fotons. Dessa forma, ambas tran-
sicoes sao acionadas e observa-se uma forte emissao
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em 493.4 nm para 62P1/2 — 5251/2 € uma emissao
mais fraca em 649.9 nm para 62P; 5 — 5Dy o.

6° Pae
6% Pys2

493.4nm

455.4nm

6251_-2

Figure 4.3: Diagrama de energia para o fon de Ba™
utilizado na primeira detecgao dos saltos quénticos

4]

Para ativacao da fluorescéncia telegrafica, uma
nova fonte de radiacdo deve ser colocada no sis-
tema (no caso do experimento uma lampada de
catodo oco de bario), induzindo fracamente as tran-
sicoes entre 5251/2 — 62P3/2 e quebrando o ci-
clo 62Py /5 — 5251/2,52D3/5. Assim, quando ex-
citado, o ion passa a produzir uma fluorescéncia em
455.4nm, resultante da transicao 62P3/2 — 5251/2
podendo em, um instante aleatério, transitar do
estado 62P3/2 para o estado metaestavel 52D5/2 e
permanecer l4 em um tempo caracteristico de cerca
de 30s até saltar novamente para o estado 5251/2.
Tal processo de “arquivamento” do fon no estado
metaestavel, fornece ao experimento longos perio-
dos sem nenhuma fluorescéncia e permite a ob-
servacao direta da aparente descontinuidade entre
saltos quanticos. A Fig. 4.4 busca mostrar os
resultados obtidos experimentalmente para a fluo-
rescéncia telegrafica em 493.4nm.

Experimentalmente, um laser LD490 foi aplicado
para excitar a linha de 493.4nm e um laser DCM
para a linha de 649.9 nm do fon de Ba™t. Uma lam-
pada de Bério induziu a emissao em 455.4 nm e um
filtro de interferéncia fez a selegao dos comprimentos
de onda de saida. Um gabinete de vacuo composto
por um bloco de ago inoxidavel com janelas, bomba
e componentes eletronicos foi utilizado para man-
ter uma pressio de cerca de 8 x 10~!! Torr. Além
disso, o ion de Ba™ foi exposto ao campo magnético
ambiente, sem a presenga de bobinas ou blindagem
magnética.
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Figure 4.4: Medidas de fluorescéncia telegrafica
para o fon de Ba™ [4].

4.3.3 Outras observagoes

Mais experimentos de fluorescéncia telegrafica
foram conduzidos em 1986 por Bergquist, Hulet,
Itano e Wineland [6] - avaliando os periodos de “ar-
quivamento” no estado metaestavel 5d°6s? —2 Dy /2
de um fon de HgT — e por Sauter, Neuhauser, Blatt
e Toschek |7] - novamente com o fon de Ba™, porém
sem excitar a transi¢io 525/, — 6°P3/5 e obser-
vando o arquivamento no estado metaestavel 52 D5 /2
por espalhamento Raman-Stokes - ambos demon-
strando uma alta correlagao entre os resultados obti-
dos experimentalmente e a interpretagao de Copen-
hague.

Historicamente, houve alguma resisténcia por
parte dos autores que consideravam as ideias da
mecanica quéntica ondulatoria para aceitar a ex-
plicacao desse fenomeno de fluorescéncia telegrafica
como manifestacoes dos saltos quanticos de Bohr,
passando a questionar, em particular, a natureza
da permanéncia nos estados metaestaveis [3].

Alguns autores [8], por sua vez, buscaram con-
ciliar as duas visoes para os saltos quanticos con-
siderando que, para medigoes em um intervalo de
tempo suficientemente pequeno, a superposigao co-
erente de estados nao se desenvolveria e seria val-
ida - em boa aproximacao - a descricao de Bohr.
Tal argumento ¢é sustentado pelo denominado efeito
Zeno, observado experimentalmente em 1990 por
Itano, Heizein, Bollinger e Wineland [9]. Simpli-
ficadamente, tal efeito pode ser compreendido assu-
mindo a evolugao temporal de um sistema quéantico,
dado na imagem de Schrédinger por:

) = e |ao)
Com h = 1. Nessa condi¢ao a probabilidade de

(4.1)
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encontrar o sistema no estado inicial em um inter-
valo 0t valera entao:

Po(6t) = [(wole™"[tho)

= |(toltho) — i(H )5t —
~1— AH?*(5t)?

(5t)*(H) 2
T O(6t3)]
(4.2)

Logo, para N medidas sucessivas e com intervalos
temporais de (Jt - t = ndt):

Py(t) = [1 — AH?(56)*)Y
EAH?
N

2
~ o~ WAH?

=i - T

(4.3)

Através da Eq. 4.3, conclui-se que para muitas
medidas (N — o00) a probabilidade do estado per-
manecer na mesma configuragdo tende a 1. Por-
tanto, ocorre uma inibigao da evolugao temporal do
sistema em uma superposicao coerente de estados,
favorecendo a interpretacao dos saltos quanticos ao
angulo de Bohr.

4.4 Simulando saltos quanticos
com Monte Carlo

A aplicaggo de métodos estocasticos, como
Monte-Carlo Wave Function (MCWF), no estudo
dos saltos quénticos data do inicio da década de
1990 [10]. Buscando vislumbrar uma pequena parte
do poder desse método e fazer alguma conexao com
a mecanica quantica ondulatéria, imaginemos um
sistema de dois niveis governado pela equagao de
Schrédinger e com Hamiltoniano dado por:

A 0 %
i=( i)
Sendo A = w — wqg a dessintonizagdo entre a fre-
quéncia da luz e a frequéncia da transicao e 2 a
frequéncia de Rabi. Evoluindo o sistema temporal-
mente, considerando que a fungao de onda se en-
contra em uma superposicao de estados dada por
[P () c1]1) + ¢2]2) e que o sistema em t=0
encontra~se no estado fundamental |T(0)) = |1),
torna-se possivel determinar as probabilidades de

encontrar o A&tomo em cada um dos estados através

de:

(4.4)



(e =
[(21e(6)|2)]” =

Pi(t) = ler(t))? = 0052% (4.5)

Py(t) = lea(t)]? = sinQ% (4.6)

Nesse sentido, como tratado em [10], a construgéo
de um co6digo para avaliar os processos de emis-
sao estimulada e absorcao pode ser elaborada sub-
dividindo o tempo de observagao dos estados em
intervalos do tipo T, = nAt (com n = 0,1,2...),
gerando nameros aleatérios r, entre [0,1] e as-
sumindo condigbes para possiveis transigoes entre
os estados |1) e |2) dadas via Ps(t)(uma vez que
Pi(t) =1 — Py(t)), entdo se:

L. Py(tn-1) < rp_1e Pa(tn) < rp=|¥) = 1)
2. Py(tn—1) < rn-1€ Pa(tn) > rp=[¥) = |2)
3. Py(tn—1) > rn_1e Pa(ty) > rp=|¥) =12)
4. Py(tn—1) = rn_1e Pa(tn) < rp=|¥) = |1)

Em 2 e 4 temos respectivamente os processos de
absor¢ao e emissao estimulada, sendo as condigoes
de alteragio imediata entre estados |1) e |2) car-
acteristicas dos saltos quénticos. Na Fig. 4.5
encontram-se algumas trajetérias quanticas - sendo
uma média sobre uma série de N medigoes - simu-
ladas em [10] - para 1, 10, 100, 105 dtomos - com
os valores de Q = 5 x 10* Hz e At = 10"s e N =
100, demonstrando o comportamento em termos dos
saltos quanticos discretos para 1 4tomo e o carater
oscilatorio para sistemas com mais dtomos, assim
como esperado para uma simulacao estocastica.

Para a completeza da analise, uma construcao
similar com MCWF pode ser realizado para a emis-
s@o espontanea em um sistema de dois niveis [11],
assumindo a existéncia de um termo dissipativo
para energia dentro do hamiltoniano efetivo, tal

COomo:
- 0 Q
for= (0 2y )

A sutiliza entre considerar ou ndo a emissao
espontanea encontra-se na diculdade que o hamil-
toniano exposto em 4.7 adiciona a simulagdo. A
presenga do termo imaginario na diagonal prlnc1pa1
torna esse operador nao hermitiano ([Heyp, H' il #
0) e produz uma necessidade de renormalizagao do
sistema j& que:

(4.7)

(W) = e (4.8)
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Figure 4.5: Simulacao para a trajetoria dos saltos
quanticos considerando absor¢ao e emissao estim-
ulada em um sistema de dois niveis. Os graficos
demonstram, respectivamente, o nimero de 1, 10,
100 e 10° atomos simulados [10].

Nesse ambito, um cédigo para avaliar o processo
de emissao espontidnea pode ser construido con-
siderando que, para r, > 1 — (¥[¢)), o sistema néo
possuira dissipacao e sofreré apenas uma renormal-
izagao junto & sua evolucao temporal e, se r, <
1 — (¢|¢) havera dissipagéo e o sistema retornara
para o estado fundamental |¢)g) [11]. As condigdes
citadas se encontram abaixo em 1 e 2, respectiva-

mente.

(1—iHdt) | (t+dt))
(D (®)]9(2))

2. [Yo) para rn, <1 — (Pl¢h)

A Fig. 4.6 busca demonstrar os resultados
obtidos para simulacao do sistema considerando a
emissao espontinea e os seguintes parametros ) =
607 x 10Hz, A = 307 x 10°Hz, I' = 127 x 106
e dt = 0.5 x 107%s. Os saltos quanticos sao avalia-
dos considerando a funcéo de onda no estado funda-
mental, correspondente aos processos de fluorescén-
cia analisados experimentalmente. Observa-se en-
tao, além de uma modificacao da fungao de onda
|1(t)) pela ndo observacao da emisséo esponténea -

(Y1)

para rp, > 1 —



reduzindo a populagao do estado excitado em 1—-I'dt
[11], a presenca de oscilagdes para os valores mé-
dios de populagao a medida que o tempo progride.
Tais resultados obtidos através das simulagoes com
MCFW, além de abrirem espaco para estudos com-
putacionais da estatistica de fendmenos que até o
momento nao possuem unanimidade nas discussoes
analiticas, pavimentam caminho para predigao do
comportamento dos saltos quénticos em sistemas
mais complexos.

0.5 \

AVaUARIIEE
il

P11

0 100 200

t (ns)

Figure 4.6: Simulacdo com MCWF para obtencao
de trajetorias quénticas (linha verde) e para uma
média de varias possiveis trajetorias do sistema
(linha preta) [11].

4.5 Conclusao

Em sintese, a série de experimentos de fluorescén-
cia telegrafica sugerem que a interpretagao proba-
bilistica para os saltos quanticos é a que mais se ad-
equa aos resultados. Atrelado a isso, uma hipotese
conciliadora entre as duas visoes acerca da natureza
das transigoes associa o comportamento discreto dos
saltos com o efeito Zeno, como consequéncia do pro-
cesso de medicao do sistema em intervalos tempo-
rais muito pequenos e a consequente nao evolucao
temporal do sistema. Por fim, foram demonstradas
maneiras praticas de simular o fenémeno dos saltos
quénticos computacionalmente, avaliando tanto os
processos de absorcao e emissao estimulada, quanto
o processo de emissao espontanea, obtendo os lim-
ites esperados para sistemas em diferentes regimes
e norteando caminho para simulagoes numéricas de
processos com demanda experimental muito mais
complexa.
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Observation of super- and subradiant
spontaneous emission of two ions

Gustavo Henrique de Franca

Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, 13560-970 Sao Carlos, SP, Brazil

Abstract: This paper presents theoretical aspects
of super- and subradiant spontaneous emission of
two ions using the Dicke model, emphasizing the
significance of collective interactions within the sys-
tem. Experimental techniques are introduced, en-
abling the practical observation of these effects.
These techniques involve selective excitation of spe-
cific states of the atoms, manipulation of dipole mo-
ments with phase differences, and control over the
distance between the ions. The second-order cor-
relation is investigated, revealing the intricate in-
terplay between the ions and their collective be-
havior. Furthermore, the paper explores potential
applications of super- and subradiance, including
enhanced quantum information processing, quan-
tum simulations and precision metrology. This work
contributes to a deeper understanding and practi-
cal utilization of super- and subradiant spontaneous
emission in the context of two-ion systems.
Keywords: Quantum Optics, Superradiance,
Subrradiance, Two Ions, Collective Effects

5.1 Introduction

Quantum systems composed of multiple interact-
ing particles often exhibit interesting collective be-
haviors that transcend the properties of individual
constituents. The study of such phenomena has led
to groundbreaking insights in various fields, ranging
from condensed matter physics [1, 2, 3| to quantum
information science [4, 5]. One intriguing collec-
tive quantum effect is the phenomenon of super-
and subradiance, which arises from the cooperative
emission of radiation by an ensemble of emitters [6].

In recent years, there has been a surge of inter-
est in exploring super- and subradiant spontaneous
emission in systems comprising two ions [7, 8, 9].
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These experiments have shed new light on the in-
tricate interplay between the internal degrees of
freedom of quantum emitters and their interaction
with the electromagnetic field. By manipulating the
quantum states and coupling strengths of these ions,
researchers have successfully observed and charac-
terized the emergence of cooperative emission phe-
nomena, opening up exciting avenues for both fun-
damental investigations and practical applications
[10].

This paper will delve into the theoretical and ex-
perimental techniques employed to observe and ma-
nipulate super- and subradiant spontaneous emis-
sion in systems involving two ions. Furthermore,
it will discuss the implications of these findings for
applications such as quantum information process-
ing, quantum simulations, and precision metrology.
The understanding gained from these investigations
holds great promise for future advancements in the
realm of collective quantum phenomena and may
pave the way for the realization of novel quantum
technologies.

5.2 Super- and Subradiant

Spontaneous Emission

A crucial factor in the study of the interaction be-
tween only two atoms is the distance between them.
In several experiments involving a pair of trapped
cold ions, interaction effects were not observed pre-
cisely due to the atom-atom distance. Dehmelt [11]
experimentally produced a trap for two atoms with
a distance of 3 pm and still did not observe interac-
tions. Eichmann [12] studied Bragg scattering using
two captured ions separated by > 15\, with A been
the wavelength of the light, and once again, no inter-



action was observed. Therefore, the observation of
collective spontaneous emission I'(R) for this mini-
mum number of atoms is given as a function of the
distance R between them. The super- and subra-
diance effects are defined by emission rates greater
or smaller, respectively, than that generated by a
single ion under the same conditions.

To mathematically model the system of interest,
we employ Dicke’s model, which allows the simpli-
fication of a system with many atoms by consid-
ering collective behavior and treating the atoms as
an effective single entity [6]. In this model, the in-
dividual atoms are assumed to interact with each
other and the electromagnetic field, leading to co-
herent effects on a macroscopic scale. By consid-
ering the collective properties of the system, such
as the total angular momentum and the average
atomic excitation, Dicke’s model enables a reduc-
tion in complexity compared to analyzing each atom
individually. In Dicke’s theory, instead of treating
the two-level atoms independently, we approach the
system as a single four-level atom (Fig. 5.1). The
higher level |e) corresponds to when both atoms
are excited, while the lower level g) represents their
ground states. Additionally, there are two collective
states denoted as |+) and |—) that are superposi-
tions of the states where only one of the atoms is in
the excited state [6].

le) = |erea)

lg) = l9192)

4) = % (Igze2) + le1g))

Figure 5.1: Diagram of the four-level system corre-
sponding to the two two-level atoms coupled in the
Dicke system. I'1 represents the spontaneous decay
to and from the states |£), which are superpositions
of states where only one ion is excited. The excited
and ground states are represented by |e) = |ejea)

and [g) = [g1g2).

The master equation formalism can be used to
derive the decay rate between energy levels in func-
tion of the distance R, which can be approximated
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to

Sk > (5.1)

IF'L(R) =Ty <1 + 5 IR

where I'y is the decay rate for a single ion and
k =27 /X [10]. What Eq. 5.1 represents is a super-
position of electromagnetic waves emitted by atoms
at different positions relative to the detector. We
consider the system initially populated in its excited
state and then calculate the decay rate between en-
ergy levels, with superradiance been equivalent to
I't (R) > T'yp and the subradiance I'_ < T'y. Experi-
mentally, this would be equivalent to considering an
initial pulse that elevates the system to the state |e),
and then measuring the rate at which the photons
emitted by spontaneous emission are detected by a
photodetector. The decay curve W(R,t) produced
by the photon statistics is given by the sum of the
four transitions as

W(R,t) = pe(t) [[+(R) + T (R)]

T+ (T4 (R) + p— (T (R) (5.2)

where the terms p;(t) correspond to the diago-
nal elements of the density matrix p(¢) given by the
master equation. In the region where kR < 1, which
means that the wavelength of the field is close to
the distance between the ions, it is relatively eas-
ier to determine when super- and subradiance oc-
cur. This can be visualized through the Eq. 5.1,
where we observe that |[I'y — I'g| > 1. However, as
kR increases |[I'y — I'g] ~ 0 and then super- and
subradiance become increasingly indistinguishable,
therefore, harder to be observed experimentally.

To observe a strong signal of super- and subradi-
ant spontaneous emission from two ions, it is nec-
essary to perform separate excitations of either |+)
or |—), stimulating the population of one of these
states. Omne way to select a state to populate is
by inducing dipole moments with a phase difference
on the atoms. DeVoe and Brewer [10] propose an
experiment capable of coherently exciting the pop-
ulation of the states |+) using a laser pulse that
forms an angle f with the trap axis and has a wave
vector k with a phase difference proportional to the
distance between the atoms, denoted as ® = k- R.
The populations of the |+) states can then be ex-
pressed in terms of the single-atom density matrices
as follows:

pi = pegl?(1 % cos @) (5.3)

Therefore, the excitations can be adjusted to oc-
cur for the |+) or |—) state by adjusting the distance
R or the incidence of the laser angle 6, so that the
phase difference is either ® = 0 or ® = 7. They



were able to experimentally verify these theoretical
results using Bajss. The technical details of the
apparatus are provided in the original paper [10].
In summary, they measured the I'(R) of the P/,
to Sy /o transition in a crystal of two ions produced
with a distance R of 1470 nm when the trap is driven
at 500V, but which could vary from 1380 to 1540 nm
with a variation of -10 to +-5V. The ions formed an
angle of 40 degrees with respect to the horizontal
plane, so to produce a phase difference of ® = m,
an incident beam at an angle § = 16° was required
for R = 1470 nm. Under these conditions, the state
|—) was predominantly excited, and by varying the
distance between the ions, we can observe the differ-
ent states being stimulated and, consequently, the
super- or subradiance occurring. Fig. 5.2 shows the
variation in the spontaneous emission of the crystal
as a function of the distance R between the ions,
compared to the spontaneous emission of a single
ion.
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Figure 5.2: Experimental data points are shown for
the lifetimes at 1380, 1470, and 1540 nm, in compar-
ison to the measured lifetime for a single ion (dashed
line) using the same apparatus [10].

Separate measurements of a single ion yielded an
average lifetime 7 = 1/T" of 7.93 & 0.03 ns, indicated
by the dotted line in the figure. A superradiant
point can be identified at 1380 nm, which is 1.5% =+
0.8% below the value for a single ion. Additionally,
a subradiant point is observed at 1540 nm, which is
1.2% =+ 0.9% above the single-ion value.

An equivalent experiment was conducted by
Mlynek et al. [9] using two artificial atoms com-
prised of superconducting qubits in the "bad cav-
ity" limit, where the cavity decay rate k is much
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larger than the coupling strength and the atomic
decay I'g. These qubits were coupled to a single
coplanar waveguide resonator within a quantum cir-
cuit. Based on the results obtained from simulat-
ing the decay of individual atoms and the collective
decay, they reach the conclusion that when both
qubits are prepared in the state |¢) and synchronized
with the resonator, a distinct collective superradi-
ance is observed. Furthermore, they can populate
what they refer to as the bright state, equivalent to
the state |+) depicted in Fig. 5.2. They observe
that the decay from this state to the ground state
is greater compared to the decay from the single
states |gies) or |e1ga) to the ground state, which is
a direct consequence of the phenomenon of super-
radiance occurring only when considering collective
interactions [9]. Fig. 5.3 shows the time-dependent
emitted power P for a specific initial state and the
deviation AP from the average power of a single
qubit. It becomes evident, as indicated by the or-
ange region, that there exists a difference between
collective and individual decay, arising from the pre-
dicted dynamics of the two ions.
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Figure 5.3: The time dependence of the emitted
power P is shown for a specific initial state (bot-
tom), along with the deviation AP (top) from the
average power of a single qubit (red points). The
collective decay for the initial state |ee) is exam-
ined. The experimental data (blue dots) are com-
pared with a simple rate equation model (solid black
lines) and full master equation simulations (solid
blue lines). The orange area indicates the differ-
ence between the collective decay of the two qubits
and the average decay of individual qubits, empha-
sizing the occurrence of super- and subradiance [9].



The analysis of the photon statistics of the trans-
mitted light provides further insights into the phe-
nomena of super- and subradiance. Richter et al.
[13] proposed a pair of *°Ca* ions cooled by a laser
on the S /5 - Py, transition at 397 nm in free space.
The scattered photons passed through a Hambury-
Brown and Twiss interferometer, which consisted of
a nonpolarizing 50/50 beam splitter and two camera
detectors. The different lifetimes between the indi-
vidual ion and the pair naturally lead to a change
in the second-order correlation measured from the
interferometer, and the observed result precisely
reflects the statistical difference between photons
scattered by superradiance and subradiance.

They analyze the collective aspects of light emis-
sion from a spatial and temporal perspective. Spa-
tially, there is a phase difference of m between
two consecutive photons detected through the de-
cay le) — |+) — |g), and a phase difference of
0.17 when the decay is |e) — |—=) — |g). Tem-
porally, we observe that the photon autocorrela-
tion function ¢g(® (r1,r2,7 = 0) displays antibunch-
ing for (rq1) d(re) = 0.1m, and bunching for
d(r2) = 6(ry) = 7, where §(r) represents the optical
phase accumulated by a photon recorded at posi-
tion r when scattered by atom 1 with respect to a
photon scattered by atom 2 [13]. Fig. 5.4 illustrates
the curve of ¢ for both cases.
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Figure 5.4: The curves represent cuts of histograms
at 7 = 0, binned to d(rz). (i) Spatial superradi-
ance is observed as indicated by the blue dots when
d(r1) = 0.1z in the direction 6(rz) = 0. On the
other hand, spatial subradiance is observed as in-
dicated by the red dots when d6(r1) = 1.057. (ii)
Intermediate regimes between spatial superradiance
and subradiance are observed for the second spon-
taneously scattered photon, when d(r1) = 0.7,
this is represented by the yellow dots, and when
d(r1) = 1.4m, this is represented by the green dots
[13].
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They conclude that when a correlated pair of
atoms emits light in free space, it exhibits remark-
able collective behavior. This behavior includes
spatial phenomena such as superradiance and sub-
radiance, which are accompanied by photon anti-
bunching and bunching, respectively.The properties
of light emitted through fundamentally collective
phenomena of ions have practical implications.

5.3 Technological applications

Super- and subradiant spontaneous emission in
systems involving two ions have significant implica-
tions for various technological applications, includ-
ing quantum information processing, quantum sim-
ulations, and precision metrology as follows.

Quantum Information Processing: Super-
and subradiance can be utilized to enhance or sup-
press the emission of photons, which is essential for
the implementation of quantum gates and the gen-
eration of entangled states. By controlling the col-
lective emission properties, researchers can enhance
the efficiency of photon generation in quantum net-
works and improve the fidelity of quantum opera-
tions. This can lead to advancements in quantum
communication, quantum cryptography, and quan-
tum computing [4, 5] .

Quantum Simulations: Systems involving two
ions can serve as excellent platforms for simulating
complex quantum systems and phenomena. Super-
and subradiance enable the exploration of coopera-
tive emission dynamics and the study of collective
quantum effects. By engineering the ions’ states
and their interaction with the electromagnetic field,
researchers can simulate a wide range of physical
phenomena, including quantum phase transitions,
quantum many-body systems, and quantum trans-
port phenomena [14, 15].

Precision Metrology: Super- and subradiance
offer opportunities for high-precision measurements
and sensing applications. The collective emission
properties can be exploited to enhance the detection
sensitivity of certain physical quantities, such as
electric or magnetic fields. By precisely controlling
the collective emission properties, researchers can
design systems that exhibit enhanced photon count
statistics, reduced noise, and improved measure-
ment precision. This has implications for precision
metrology techniques, such as quantum metrology,
quantum sensing, and quantum-enhanced imaging
[16].

Fundamental Physics: Super- and subradiant
spontaneous emission in systems involving two ions



offer opportunities to study fundamental aspects
of light-matter interactions and quantum dynam-
ics. These phenomena highlight the cooperative be-
havior of quantum emitters and their interactions
with the quantized electromagnetic field. By explor-
ing the interplay between collective effects, coherent
control, and environmental factors, researchers can
gain a deeper understanding of quantum mechan-
ics, quantum electrodynamics, and the foundations
of quantum physics [6, 9, 10].

In summary, super- and subradiant spontaneous
emission in systems involving two ions have far-
reaching implications for quantum information pro-
cessing, quantum simulations, precision metrology,
quantum control, and fundamental physics. These
phenomena provide avenues for enhancing quantum
operations, simulating complex systems, improving
measurement precision, and advancing our under-
standing of quantum dynamics. Harnessing and
controlling collective quantum effects in such sys-
tems opens up new opportunities for technological
advancements and scientific discoveries.

5.4 Conclusion

In conclusion, the observation of super- and sub-
radiant spontaneous emission of two ions repre-
sents a significant milestone in the study of collec-
tive quantum phenomena. Through careful exper-
imental investigations and theoretical analyses, re-
searchers have gained insights into the cooperative
behavior of quantum emitters and their interaction
with the electromagnetic field.

Theoretical models, such as the Dicke model,
have provided a solid foundation for understand-
ing the underlying principles governing super- and
subradiance. These models have elucidated the role
of collective states, quantum interference, and the
interplay between emitters and the field in deter-
mining the emission properties of the system.

Experimental techniques have enabled the practi-
cal observation of the effects and the precise control
and measurement of the emitted photons. These
techniques have allowed researchers to observe and
manipulate the super- and subradiant effects, pro-
viding experimental evidence that aligns well with
theoretical predictions.

The implications of super- and subradiance ex-
tend beyond fundamental physics, with significant
implications for quantum information processing,
quantum simulations, and precision metrology. The
ability to enhance or suppress the emission of pho-
tons in controlled ways opens up new avenues for
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quantum technologies, including improved quantum
gates, efficient photon sources, and high-precision
measurement devices.

Furthermore, the study of super- and subradi-
ant spontaneous emission in systems involving two
ions contributes to our understanding of fundamen-
tal quantum dynamics and the interplay between
quantum emitters and the electromagnetic field. It
sheds light on the cooperative behavior of quan-
tum systems and the emergence of collective effects,
providing valuable insights into the foundations of
quantum mechanics.

As we continue to explore and refine our un-
derstanding of super- and subradiant spontaneous
emission, there is immense potential for further ad-
vancements in both theoretical understanding and
experimental applications. Future research could
focus on exploring more complex systems, investi-
gating novel control techniques, and expanding the
range of applications, thereby unlocking the full po-
tential of collective quantum phenomena.
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The Einstein-Podolski-Rosen hypothesis
and its experimental falsification

Nathan Barbola Marucci
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Abstract: In a 1935 article entitled "Can quantum
mechanical description of physical reality be consid-
ered complete?", Albert Einstein, Boris Podolsky,
and Nathan Rosen argued that quantum mechanics
was incomplete. The so-called EPR paradox was
based on the principles of realism and locality. The
completeness of quantum mechanics was debated
for many years until John Bell proposed an inequal-
ity in 1964 to test hidden variable theories. How-
ever, the predictions of quantum mechanics, along
with the experimental results that followed in the
1980s, strongly violated this inequality. Therefore,
this work aims to point out the arguments used by
those opposed to the completeness of quantum me-
chanics, as well as to present the development made
by Bell to arrive at his inequality and describe an
experiment conducted by physicist Alain Aspect.

6.1 Introduction

6.1.1 Determinism vs. Causality

As we know, in quantum mechanics, every observ-
able is represented by a Hermitian operator whose
eigenstates form a complete basis on which we can
expand the quantum state of the system. Thus, let
A be a Hermitian operator with discrete eigenvalues
a’. We have:

Aldy=d'|d) and [T)=> cold) (6.1)

Here, |a’) represents the eigenstates of A and sat-
isfies the orthonormality condition:

(@]} = Sqrar

(6.2)
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Thus, the squared magnitude of the coefficients
cq’ gives the probability of obtaining the eigenvalue
a’ when measuring A. Therefore, quantum mechan-
ics exhibits a probabilistic nature.

On the other hand, once we know the initial quan-
tum state of the system, we can determine how it
evolves over time through the Schréodinger equation:

H|U) = m% W) (6.3)

Hence, in terms of the system’s evolution, quan-
tum mechanics is deterministic.

6.1.2 Realism

However, the aspect of quantum theory that tells
us only the probability of obtaining a certain value
when making a measurement troubled many physi-
cists in the early 20th century, with Albert Einstein
being the most emblematic among them. The so-
called realists believed that nature should not be
probabilistic, but completely deterministic, so that
we should know the state of the system with preci-
sion. For them, quantum mechanics was not wrong,
but incomplete; it lacked unknown variables, called
hidden variables, which, together with the wave
function ¥(z') given by

U(z') = (2'|¥), (6.4)

would fully characterize the physical system. Thus,
since we wouldn’t have prior knowledge of these hid-
den variables, we could only have access to proba-
bilities.

On the other hand, the orthodox viewpoint be-
lieved that quantum mechanics was complete, that
these hidden variables did not exist, and that nature
was indeed probabilistic. However, this interpre-
tation brings something difficult to conceive: the



collapse of the wave function. Due to the fact
that successive measurements of the same quantity
always result in the same value, it is necessary to
impose that the wave function collapses. In other
words,
|\I/> A measurement |a/> ) (65)
In addition to these two lines of thought at the
time, there were the agnostics who refrained from
seeking an answer to these questions, claiming that
they were merely philosophical issues. What mat-
tered to them was that quantum theory agreed with
experimental observations.

6.2 EPR Paradox

6.2.1 Overview

In a 1935 article [1] titled "Can the quantum-
mechanical description of physical reality be con-
sidered complete?", an thought experiment known
as the EPR Paradox was proposed by Albert Ein-
stein, Boris Podolsky, and Nathan Rosen. In the
article, the three authors argued from a realist per-
spective that the description provided by quantum
mechanics is incomplete. And for this, they utilized
the phenomenon of quantum entanglement.

We will now summarize the argument used by
them.

Consider two systems, I and II, that are allowed
to interact from time ¢t = 0 to t = T, after which it is
assumed that there is no further interaction between
the two parties. Let’s denote the total wave function
as . We cannot calculate the state in which each
system remains after the interaction. This can only
be done, according to quantum mechanics, through
measurements that result in the collapse of the wave
function.

Let a1, as, az, --- be the eigenvalues of some
physical quantity A, and up(x1), ug(z1), us(zy), - -
their respective eigenfunctions, where x; is the vari-
able used to describe the first system. Then, the
wave function ¥ can be expressed as:

U(xy,20) = Z¢n(:c2)un(x1) (6.6)

where x5 is the variable used to describe the sec-
ond system. Here, 1, (z2) are the coefficients of the
expansion of ¥ in a series of orthogonal functions
Un (27). X

Suppose that the quantity A of the first system
is measured and the value found is ai. Then, we
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can conclude that after the measurement of the first
system, it is left in the state described by the wave
function ug(x1), and the second system in the state
corresponding to 1 (x2). Thus, the wave packet de-
scribed by Equation 6.6 is reduced to a single term
Yr(w2)ug(w1).

However, the set of eigenfunctions w, (x1) is deter-
mined by the choice of the observable A. If instead
we chose another observable, say B, with eigenval-
ues by, bo, b3, -+, and with the respective eigen-
functions vy (z1), va(z1), vs(z1), ---, then instead
of Equation 6.6, we would have the following ex-
pansion:

\P(Il,IQ) = Z@s(xQ)US(Il) (6~7)

where @s(z2) are the new expansion coefficients. If
the quantity B of the first system is measured and
the value b, is found, then the first system will be
in the state with the corresponding wave function
vr(21), and the second system will have the wave
function ¢, (z2).

In this way, we can see that as a consequence of
the different measurements performed on the first
system, the second system can be left in states with
two different wave functions. And since at the time
of measurement the two systems no longer interact,
no actual change can occur in the second system
as a result of any measurement made on the first.
Thus, it is possible to associate two different wave
functions (¢, and ¢,) with the same reality (the
second system after the interaction).

It turns out that the observables A and B can
be chosen in such a way that they do not commute
with each other, that is,

[A, B] #0. (6.8)
Thus, there is an uncertainty relationship between
them given by the Generalized Heisenberg Un-
certainty Principle:

Jl@a) [(app) = Laa s e

This occurs, for example, in the case of the position
2 and the momentum p of a particle, where it is not
possible to simultaneously know these two physical
quantities with precision. From an orthodox point
of view, this means that they do not possess simul-
taneous reality.

Therefore, we must prove that (1) the descrip-
tion of quantum mechanics is incomplete or (2) two
non-commuting observables cannot have simultane-
ous physical reality. To do this, let us consider that




the description of nature by the wave function is
complete. From the previous discussion about sys-
tems I and II, we are led to the conclusion that two
physical quantities with non-commuting operators
can have simultaneous reality. Thus, the negation
of (1) implies the negation of (2), and we are forced
to conclude that the description provided by quan-
tum mechanics is incomplete.

David Bohm, in a 1957 paper [2], presented a sim-
plified version of the EPR Paradox that turned the
thought experiment into something closer to a fea-
sible experiment. We will discuss this version next.

6.2.2 Spin Correlation

Consider a total spin 0 system consisting of two
particles, A and B, each with spin 1/2. Thus, the
system will be in the singlet spin state, given by:

1
V2

where |[+—) means that the first particle (A) has
spin up and the second one (B) has spin down. The
same argument holds for the state |—+).

Then, the two particles are separated by a process
that does not influence the total spin of the system.
After these particles are separated by a sufficiently
large distance to stop interacting with each other,
any component of the spin of the first particle (A)
is measured, for example, using a Stern-Gerlach ap-
paratus (Figure 6.1). Due to the fact that the total
spin is still zero, we can conclude that the corre-
sponding component of the spin of the other particle
(B) is opposite to that of A.

7 =0,m=0)=—(+=)—[|-+)), (6.10)

Classical

prediction What was

Sil i
actually observed fiver atoms

Furnace

Inhomogeneous
magnetic field

Figure 6.1: Scheme of the Stern-Gerlach Experi-
ment

If it were a classical system, there would be no
difficulty in interpreting the results above, since all
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spin components of each particle would be well-
defined at each instant of time. Thus, each spin
component of particle A would have a value oppo-
site to that same component of B from the begin-
ning. In other words, the two spin vectors would be
completely correlated.

However, in quantum mechanics, a difficulty
arises due to the fact that:

[Si, S]] = ieijkhSk, (611)
and only one spin component has a defined value at
a time. Therefore, if the z-component is known, the
x and y components become indeterminate and can
be considered as a kind of random fluctuation. In
fact, since

L
V2

after measuring S., there is a 50% chance of obtain-
ing spin up or spin down when measuring S,.

Thus, the result for a component of B seems to de-
pend on the type of measurement being performed
on A. We can measure any spin component of parti-
cle A we want by simply rotating the experimental
setup. According to quantum mechanics, it doesn’t
matter which component of particle A is measured,
the corresponding component of particle B will have
a defined value opposite to it. However, the ques-
tion arises: How does particle B know which spin
component of particle A is being measured, if they
are separated by a large distance and there is no in-
teraction between them or between particle B and
the experimental setup?

Finstein referred to this phenomenon, in which
the measurement of a property of one particle causes
the wave function of another particle to instanta-
neously collapse, as "spooky action at a distance."
And the main assumption of those who argued that
quantum mechanics was incomplete was that no in-
fluence could propagate faster than the speed of
light! This principle is called locality.

This problem would be easily solved from the re-
alist perspective, as according to them, the spin of
the two particles was already predetermined from
the moment the system decayed.

The debate about whether nature was proba-
bilistic or deterministic remained within the philo-
sophical realm until a 1964 paper [3]| titled "On
the Einstein-Podolsky-Rosen paradox," where the
physicist John Bell proposed an inequality that
could be experimentally tested, putting the exis-
tence or non-existence of hidden variables to the
test.

1Sz, %) = —= (|Se, +) £ 1Sz, ), (6.12)



6.3 Bell’s Theorem

To illustrate what was mentioned in subsec-
tion 6.2.2, let’s consider the decay of a neutral pion
in the initial singlet state into an electron and a
positron.

0 —e +et. (6.13)
As we know, the electron and the positron have a
spin of 1/2, so their components will have eigenval-
ues +h/2. For simplicity, we will adopt //2 as the
unit.

What Bell proposed was to calculate the average
value of the spin product for a set of detector ori-
entations. Let this average be denoted by P(a,b),
where a is the unit vector giving the orientation of
the spin component measurement for the first par-
ticle (let’s say, the electron) and b is the unit vector
giving the orientation of the spin measurement for
the second particle (positron).

So, if the detectors are parallel (b = a), when
we measure the electron’s spin and obtain +1, we
know that the positron’s spin will be -1 and vice
versa. The product between them will always be -1,
and consequently, their average will also be:

P(a,a) = —1 (6.14)

Similarly, if the axes are antiparallel (b = —a),
then each product will result in +1, so

P(a,—a) =+1 (6.15)

For arbitrary orientations,
predicts

quantum mechanics

| P(a,b) = —a-b)| (6.16)

However, Bell discovered that this is incompatible
with any theory of hidden variables!

Suppose that the "complete" state of the system
is characterized by the hidden variable A, which
varies in a way that we neither control nor under-
stand during the pion decay. Furthermore, assume
that the electron’s measurement result is indepen-
dent of the orientation (b) of the positron’s de-
tector. Then, there must exist a function A(a, \)
that gives the electron’s measurement result, and
another function B(b, \) for the positron’s measure-
ment result. These functions can only take the val-
ues 1.

A(a,\) =+1; B(b,\) = (6.17)

When the detectors are aligned, the results are
perfectly correlated:

A(a,\) = —B(a, \) (6.18)
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and this is true for all \.
Obviously, the average of the product of the mea-
surements will be

P(a,b) = / p(NA(a, )B(b,\)dA  (6.19)

where p(\) is a probability density for the hidden
variable. And, like any probability density, it must
be non-negative and satisfy the normalization con-
dition:

/ p(N)dX =1 (6.20)

Using Equation 6.18, we can eliminate B in Equa-
tion 6.19

Plab) = — / p(NA(a, A, AN (6.21)
And, if ¢ is another unit vector, then
P(a,b) — Pla,c) =
- / p(\) [A(a, N A(b, ) — Afa, \)A(c, A)] dA
(6.22)
Since [A(b, \)]* = 1, we have:
P(a,b) — Pla,c) =

(6.23)
But it follows that —1 < [A(a, A)A( b,)\)] < +1.
Moreover, p(\) [1 — A(b, \)A(e, V)] > 0. Thercfore,

we can conclude that

‘P(a7b) - P(aa C)|
(6.24)
< / PN [1 = A(b, \)A(c, )] dA
Or, more simply,

|P(a,b) - P(a,c)| <1+ P(b,c)|  (6.25)
Equation 6.25 is the famous Bell’s Inequality,

and it can be experimentally tested in Bell tests.
If it is satisfied, nature respects the principle of lo-
cality, and hidden variables exist. If the inequality
is not satisfied, nature is non-local, and hidden vari-
ables do not exist.

It is easy to see that the prediction of quan-
tum mechanics (Equation 6.16) is incompatible with
Bell’s inequality. In fact, consider Figure 6.2. Ac-
cording to the prediction of quantum mechanics, we
should have

P(a,b)=0 and P(a,c)= P(b,c)=—-0.707

(6.26)



However,

0.707 £ 1 —0.707 = 0.293 (6.27)

This violates Bell’s inequality, demonstrating the
non-locality of quantum mechanics.

b A

1457
‘450

—

Figure 6.2: Orientation of the detectors

6.4 Aspect’s Experiment

In 1969, Bell’s Theorem was extended by Clauser,
Horne, Shimony, and Holt (CHSH inequality) to in-
clude actual systems [4], providing an experimental
test for all local hidden-variable theories.

During the years 1980 to 1982, the French physi-
cist Alain Aspect conducted a series of experiments
with entangled photons in order to test Bell’s in-
equality. Below, we describe one of these experi-
ments [5].

This experiment employed the 4p? 'S, —
4s4p 1Py — 4s% 1S; cascade in calcium (Figure 6.3).
This cascade yields two visible photons, v; (551.3
nm) and vy (422.7 nm), correlated in polarization.
Calcium atoms are selectively excited to the upper
level of the cascade from the ground state through
two-photon absorption. Calcium is irradiated by
two laser beams. The first laser beam (Mg = 406.7
nm) is provided by a single-mode krypton ion laser,
and the second laser is a single-mode Rhodamine
dye laser tuned to resonance for the two-photon pro-
cess (Ap = 561 nm).

ap?ls, __
Vo
581nm

Figure 6.3: Relevant levels of calcium.
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Fluorescence is then collected. Figure 6.4 shows
a schematic diagram of the apparatus used. All
the optical elements are antireflection coated. Po-
larizers 1 and II are inclined at nearly the Brew-
ster’s angle (zero reflectance). The transmittance
€h; and € of the polarizers (i = 1 or 2) for paral-
lel or perpendicular polarized light were then mea-
sured: e}\/[ = 0.971 £+ 0.005, e,ln = 0.029 £+ 0.005,
€2, = 0.968 £ 0.005, and €2, = 0.028 =+ 0.005.

Atomic beam

Kr laser

Filter

Pol vy
A == = ("%

stop m start |®
Figure 6.4: Schematic diagram of the apparatus and
electronics.

The correlation rate R(a,b) between polarizer I
in the direction a and polarizer II in the direction b,
the correlation rate Ry (a’) with polarizer IT removed
and polarizer I in the direction a’, the correlation
rate Ro(b’) with polarizer I removed and polarizer
II in the direction b’, and the correlation rate Ry
with both polarizers removed were then measured.
Quantum mechanics predicts that:

1
R(p)/Ro == (eps + €,) (€3 + €0)+

4
1
1(6h — b ) (e — &) F cos(2¢)

(6.28)

and
1, ,
R;/Ry = 5(63\/[ +e,), for i=1 or 2 (6.29)

where ¢ = (a,b) is the angle between these two
orientations and F' = 0.984 is an equipment adjust-
ment parameter.

Figure 6.5 presents the normalized graph of
R(p)/Ry as a function of the angle ¢. The points
represent the experimental data, and the solid
curve is the result predicted by quantum mechanics
(Equation 6.28 and Equation 6.29).
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Figure 6.5: Normalized coincidence rate as a func-
tion of the relative polarizer orientation.

The generalized Bell theorem yields the following
inequality:
-1<8

<0 (6.30)

where S = [R(a,b)—R(a,b’)+R(a’,b)+R(a’,b")—
Ryi(a’) — Ra(b')]/Ro.

We can see that the maximum violation of the
inequality (Equation 6.30) is predicted by Equa-
tion 6.28 and Equation 6.29 for the set of orien-
tations shown in Figure 6.6.

(a) (b)

b

o)

a

m)

b
b 67°5

22°5 _ a’
b
Figure 6.6: Orientations leading to the maximum
violations of generalized Bell inequalities.

Thus, the experimental value obtained for S in
the configuration displayed in Figure 6.6 was Sezp =
(0.126 + 0.014). This result violates Equation 6.30
and is consistent with the result predicted by quan-
tum mechanics Sgp = 0.118 £ 0.005.

6.5 Conclusion

Quantum mechanics is one of the most successful
theories, and through the works utilizing entangled
photons by Alain Aspect, John Clauser, and An-
ton Zeilinger, its completeness and non-locality have
been demonstrated. It is no wonder that these three
physicists were awarded the Nobel Prize in Physics
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in 2022 for these contributions, paving the way for
the development of quantum computers, quantum
networks, and quantum encrypted communication.
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Bose-Einstein condensation

Otdvio Perez Palamoni

Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, 13560-970 Sao Carlos, SP, Brazil

Abstract: This article provides an overview of
the differences between Fermions and Bosons, fo-
cusing on Bose-Einstein condensates (BECs). Some
examples are explored such as trapping an ideial
boson gas in a three-dimensional harmonic poten-
tial, which enhances the condensation rate when
compared with a box. The article also deduce the
Gross-Pitaevskii Equation, which distinguishes be-
tween ideal and real gases in the context of BECs.
Visualizations of BECs from past and present are
presented, showcasing the progress in studying these
quantum phenomena. Overall, this article offers
valuable insights into quantum physics and the po-
tential practical implications of BECs in various sci-
entific fields.

7.1 Introduction

The Bose-Einstein Condensate (BEC) was ini-
tially conceptualized by Albert Einstein in 1925,
building upon the earlier work of Satyendra Nath
Bose, published the previous year. Bose-Einstein
condensation involves the cooling of a high-density
gas of bosons, particles that do not interact with
each other, below the critical temperature (TC) -
also known as the condensate temperature - result-
ing in a macroscopic fraction of particles occupying
the lowest energy state.

Due to the ability to achieve a substantial num-
ber of particles in a single quantum state, BECs
serve as a remarkable tool for investigating sta-
tistical mechanics, quantum mechanics, condensed
matter, and other related fields. The following
are some noteworthy applications: Fundamental
physics, atom interferometry, quantum optics, and
photonics.

7.1.1 Fermions vs Bosons

Particles constitute the fundamental building
blocks of matter and can be categorized into two
primary classifications: Fermions and Bosons.

e Fermions: Fermions are particles that obey
the Pauli exclusion principle, which states that
no two identical fermions can occupy the same
quantum state simultaneously, so they have
half-integer spin values (%, %, ...), they also ad-

here to the Fermi-Dirac Distribution.

1) ——— (7.1)

E—pn
eFsT +1

Where f7(E) represents the occupation prob-
ability of the energy E and state r, E is the
energy of the state, u is the chemical poten-
tial, kp is the Boltzmann constant, and T is
the temperature of the system.

Examples of Fermions: Electrons, Protons,
and Neutrons.

e Bosons: Bosons are particles that do not obey
the Pauli exclusion principle, allowing multi-
ple identical bosons to occupy the same quan-
tum state simultaneously. They have integer
spin values (1,2, 3, ...), and they also follow the
Bose-Einstein Distribution.

f1(B) = (7.2)

Examples of Fermions: Photons, Gluons, and
the W and Z bosons.
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Figure 7.1: Visual representation of the difference
between Fermions and Bosons.

7.1.2 The ideal Bose gas with an 3D
harmonic potential

At high temperatures, a gas can be conceptual-
ized as a collection of numerous billiard balls pos-
sessing a velocity denoted as v. The numeric den-
sity of the gas is inversely proportional to the cube
of the mean distance between colliding particles (d),
meaning that as d decreases, the density increases.
However, as the temperature decreases, a different
phenomenon comes into play: the wave-like behav-
ior of particles becomes significant.

A significant portion of the particles contributes
to the formation of the large matter-wave. How-
ever, it is worth noting that not all particles partic-
ipate in this wave. In the hypothetical situation of
reaching absolute zero temperature (0 K), all parti-
cles would occupy the ground state, leading to the
creation of a pure Bose-Einstein Condensate (BEC)
within an enormous matter-wave. Unfortunately,
reaching absolute zero is unattainable due to the
law of thermodynamics. The ability to approach
such low temperatures allows researchers to observe
and analyze the behavior of matter on a quantum
scale, contributing to our understanding of the fun-
damental principles of physics.

Supposing a trapped gas be subjected to an exter-
nal potential. In Statistical Physics, we have the fol-
lowing large partition function = for non-interacting
bosons gas:

1
— e*ﬁar*ﬂ‘

2(B.em=]]5

IS

1

Equation 7.3 can be rewrite as:

In[E(B,e,1)] = - In(1—¢e ) (T.4)

>

re{states}

In equation 7.4 we have that ¢ = e/ is the system
fugacity. The total number of particles N can be
obtained using equation 7.4.
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a

1
N=C:@= > =@
dC re{states} C ¢ -1
- 1
v (7.5)

In the quantum realm, bosons exhibit a nonpos-
itive chemical potential (< 0). As the tempera-
ture decreases, the chemical potential increases un-
til it reaches zero at the critical temperature. Below
the critical temperature, the chemical potential re-
mains at zero. This unique behavior is indicative of
Bose-Einstein Condensation and underlines its sig-
nificance.In this scenario, the fugacity ¢ = 1, and
the energy of the ground state is much smaller than
the product of Boltzmann’s constant and the tem-
perature € < kT These conditions result in the oc-
cupation of the ground state becoming macroscopic.
This macroscopic occupation is a defining character-
istic of Bose-Einstein Condensation. It stems from
a large number of particles in a single state, leading
to the formation of a coherent matter wave through
the superposition of multiple De Broglie waves from
each particle in the system.

It is important to note that as the fugacity de-
creases (corresponding to higher temperatures), the
occupation of the ground state diminishes, pushing
the particles towards excited states. This transition
corresponds to the classical regime, where the num-
ber of particles in each state is microscopic. In this
regime, the quantum behavior becomes impercepti-
ble. The classical regime arises from low fugacity
values due to high temperatures, rendering quan-
tum statistics unobservable. Mathematically, in the
limit of low temperature, the expression for f” in
equation 7.4 tends towards oo. This means that
there is a macroscopic number of particles in the
ground state.

70 = lim (£7) = o0
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Figure 7.2: Statistical distribution of bosons states
for three different values of fugacity ({) for the
ground state (r = 0). All values converge to 0 as
T — oo.

The Critical temperature (7;.) denotes the tem-
perature at which a phase transition takes place.
For a uniform gas confined in a trap, this critical
temperature can be determined using the following
relation:

2
2n§

T, =C. (7.7)

ka

Where C is a constant that depends on the trap,

h < 1.055x10734Js is the reduced Planck constant,

n is the numerical density of particles and m is the

mass of each particle. To determine the constant

value, we use the quantum states degeneracy p. We

will consider a gas trapped in a potential V that is

a 3D harmonic oscillation, then the potential V can
be expressed as follows:

U}Z

NE

m

Vix,y,z) = 5 Wi 2 = (wx —l—wyy +w 22)
i=1

(7.8)

To solve this problem, first, we use equation 7.9,

which is the time-independent Schrédinger equa-

tion.

—— A_h224
Hlp)=EW),H==-5-V"+V (7.9)

This leads to the following equations for each axis:
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Assuming that o = /=i and 3 = %7 equa-
tion 7.10 turns into equation 7.11.
d? B
Y(a) — aP(a) = fo(a) (7.11)

da?

Equation 7.11 is known as the Hermite differential
equation and its solutions are given by the Hermite
polynomials, so the eigenvalues for the system can
be expressed as shown in equation 7.12

1 1 1
E = (nT + 2) ﬁmer(ny + 2) hwar(nz + 2> hw,,

(7.12)

Assuming an G(¢) the number of particules with

energy at € = €, + ¢4 + €., and considering that

hw; < €. The following expression can be deter-
mined using equation 7.12.
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Since the degeneracy p is the number of particles
with energy between € and € + de, p can be found
using equation 7.14.
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By defining this phase transition as when the ex-
cited states are saturated, forcing any new particle
go to the ground state. In this situation, the chem-
ical potential is minimum (u = 0). We can describe
this situation mathematically assuming the thermo-
dynamics limit and transforming the number series
in integral:

< . 0,T > T,
N_N0+/O f p(a)de:{l_fo nople)T < T.
(7.16)
Ny /N is the condensed fraction and it shows
the system particules fractions that are in ground
state and n. is the occupancy of states with energy
€. For the condensate fractions, we find that:

No 1 [~/ 1 Cs
¥l () eei
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Sol'(n) = (n—1)!forn € Nand {(n) = > 7" | =&
the zeta function. When T' = T, then Ny = 0, in
this case equation 7.17 leads to the following expres-
sion for the T:
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If we substitute a typical number of particles and
frequencies found in the laboratory, we get the con-
densation temperature of hundreds of nanokelvin.
Since we have the condensation temperature expres-
sion, we can simplify the condensate fraction expres-
sion and write it as a function of T:

No _, T\’
N T.

For a box, the same equation is described as

No _, (T 3
N T,

While both expressions represent the same
fenomenum, equation 7.19 implies that atoms pop-
ulate the ground state faster at lower temperatures,
this is shown in figure 7.3

(7.19)

(7.20)

Harmonic Trap vs Box
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Figure 7.3: Comparison between condensation frac-
tion in harmonic trap and box.

7.1.3 Gross-Pitaevskii
(GPE)

In section 1.3.1, a simple description non-
interacting (ideal gas) boson gases trapped by a
3D harmonic oscillation potential was made. When
dealing with gases that particles interact with each
other (real gas), to do it, we employ the mean-field
theory of Gross-Pitaevskii. This theory describes
the properties of an interacting boson gas at ab-
solute zero temperature, with the scattering length
much smaller than the average distance between gas
particles, ensuring that the loss of atoms from the

Equation
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(7.18)
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Bose-Einstein condensate (BEC) to other quantum
states of the system is negligible.

Considering a system of N bosonic particles de-
scribed by the Hamiltonian:

H= Z )+ Uo Y0 (7

1<J

2mZ TJ
(7.21)

The first term represents it’s kinetic energy, the
second term the external potential, and the last
term the interaction between particles, with Uy
representing the constant characterizing the effec-
tive contact potential between the particles. Here,
we will consider repulsive interactions by adopting
Uy > 0.

In dilute atomic gases, interactions are primarily
binary and can be theoretically treated as a scatter-
ing approximation of s-wave. The exact form of the
interaction potential between particles is unknown,
and only one parameter, denoted as "a," the scatter-
ing length of the s-wave, characterizes the interac-
tion, where Uy = % Let us construct the Hamil-
tonian operator:

N
:Z ——v +V () +Uo Y67 — 7))

1<J
(7.22)
The energy functional for N particles system:
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Merging equation 7.22 and equation 7.23.
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Using the Hartee approximation the above ex-

Then the solution becomes:
pression can be simplified into
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K2 . By defining the wave function of the condensate
—%V +V(r —I-UOZ(S 7 —13)| @(r1)9(n)  as a whole:
1<J
(7.26) )
b() = VN@() = n(i) = [$(7)] (7.33)
N Since n(~ r) is the spatial numerical density, by
E= Z/dr‘;go*(r_{) using a large N where N — 1 ~ N, the following
conclusion can be made:
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(7.29) Using Lagrange method, the minimum energy in
Then, equation 7.28 becomes: relation of ¢* can be established
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independent-time equation:
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This theory is an approximation and therefore not
universally valid. Once the loss of atoms to other
quantum states of the system becomes significant,
this approximation is no longer valid. Throughout
the derivation, we assume that the only interaction
present among particles is the contact interaction,
which means that this approximation holds true for
dilute gases (where na® < 1) at absolute zero tem-
perature (T' = 0K).

7.1.4 Visualization of BCE

Observation of a BECs

The article Observation of Bose-Einstein
condensation in a dilute atomic vapor, a BEC
was produced in a vapor of rubidium-87 atoms that
was confined by magnetic fields and evaporatively
cooled. This experiment was important because it
provided direct evidence for the existence of Bose-
Einstein condensation.

In the experiment, a cloud of rubidium-87 atoms
was cooled using laser cooling techniques and a com-
bination of lasers and magnetic fields. This cooling
process brought the atoms to extremely low tem-
peratures. Once sufficiently cooled, the atoms were
transferred into a magnetic trap created by elec-
tromagnetic fields to prevent them from escaping.
To achieve Bose-Einstein condensation, an evapora-
tive cooling, selectively removing the highest-energy
atoms from the trap, which gradually formed a con-
densate as the remaining atoms with lower ener-
gies coalesced. The presence of the condensate was
confirmed through laser imaging techniques that al-
lowed visualization of its density distribution by
shining a laser beam through the atom cloud.

By setting 7' = 170nK and % = 2.5 x 10'2cm?
three BCEs were observable.
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Figure 7.4: Schematic of the apparatus. Six laser
beams intersect in a glass cell, creating a magneto-
optical trap (MOT). The cell is 2.5 cm square by 12
cm long, and the beams are 1.5 cm in diameter. The
coils generating the fixed quadrupole and rotating
transverse components of the TOP trap magnetic
fields are shown in green and blue, respectively. The
glass cell hangs down from a steel chamber (not
shown) containing a vacuum pump and rubidium
source. Also not shown are coils for injecting the
rf magnetic field for evaporation and the additional
laser beams for imaging and optically pumping the
trapped atom sample.

Figure 7.5: False-color images display the velocity
distribution of the cloud (A) just before the ap-
pearance of the condensate. (B) just after the ap-
pearance of the condensate, and (C) after further
evaporation has left a sample of nearly pure con-
densate. The circular pattern of the noncondensate
fraction (mostly yellow and green) is an indication
that the velocity distribution s isotropic, consistent
with thermal equilibrium. The condensate fraction
(mostly blue and white) is elliptical. indicative that
it is a highly nonthermal distribution. The elliptical
pattern is in fact an image of a single, macroscopi-
cally occupied quantum wave function. The field of
view of each image is 200 Jm by 270 ipm. The ob-
served horizontal width of the condensate is broad-
ened by the experimental resolution.

3D visualization of BECs

The thesis by Smaira, titled "Quantum fluids
spatial distribution evaluation and its characteri-
zation," explores the use of tomography to recon-



struct a Bose-Einstein condensate (BEC) in three
dimensions. Tomography, a technique commonly
employed in medical diagnostics and other scientific
fields, allows for the creation of cross-sectional im-
ages of objects or body parts. By acquiring multiple
projections of the object from different angles and
utilizing computer algorithms, the internal struc-
ture of the object can be visualized.

In the case of Bose-Einstein condensates, the the-
sis showcases both a two-dimensional image (Figure
7.6) and a three-dimensional reconstruction (Figure
7.7).

BEC

oD

|

Figure 7.6: 2D images of BECs. Only laser beam
(Ir), sample (Ipgc), background (Ip) and optical
denstity (OD) images.

-

'
. |
i \ )
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Figure 7.7: 3D reconstruction of BECs. On the
left, from top to bottom, shows the Original 3D
reconstruction, the reconstructed 3D cloud, and the
difference between them. On the right, from top to
bottom, shows the recovered 3D reconstruction and
the Original cloud obtained from the experiment.

7.2 Conclusion

In conclusion, this article has provided a com-
prehensive overview of the distinctions between
Fermions and Bosons, shedding light on the intrigu-
ing realm of Bose-Einstein condensates (BECs) and
exploring some of their notable applications. The
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examination of an ideal Bose gas trapped by a three-
dimensional harmonic potential highlighted the ad-
vantages of utilizing such a confinement method
over a simple box. It became evident that the parti-
cles exhibited a significantly enhanced condensation
rate within the harmonic potential.

Moreover, leveraging the insights gained from
the three-dimensional harmonic example, this ar-
ticle also delved into the derivation of the Gross-
Pitaevskii Equation, which underscores the dispar-
ity between dealing with ideal gases and real gases
in the context of BECs. This distinction is crucial
for a more comprehensive understanding of the be-
havior and properties of Bose-Einstein condensates
in practical scenarios.

To complement the theoretical discussion, two vi-
sualizations were presented in this work. The first
visualization, originating from a 1995 article, of-
fered a groundbreaking glimpse into the emergence
of BECs, marking a significant milestone in the field.
The second visualization involved the reconstruc-
tion of BECs in three dimensions using computa-
tional methods, providing a contemporary perspec-
tive on the advances made in the visualization and
study of these unique quantum phenomena.
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Abstract: The Elitzur and Vaidman bomb test-
ing problem is a thought experiment in quantum
mechanics that explores the concept of quantum su-
perposition and entanglement. In this experiment,
a bomb is placed inside a chamber that has two en-
trances, each with a photon detector. The bomb is
designed to either explode or not depending on the
polarization of the photon that enters the chamber.
However, the experiment is set up in such a way
that it is impossible to know whether the bomb has
exploded or not without disturbing the system. In
this work, we propose a methodology that uses com-
puter simulations to investigate the behavior of the
system and also an experimental proposal that uses
simple laser sources to test the theory.

8.1 Introduction

Quantum mechanics, as a foundational theory,
provides a comprehensive framework for under-
standing the behavior of particles at the microscopic
level. While numerous concepts contribute to the
richness of this theory, two crucial aspects that chal-
lenge classical intuitions are superposition and en-
tanglement. Delving into these ideas leads us to
the fascinating concept of nonlocality in quantum
mechanics.

Superposition refers to the remarkable phe-
nomenon in which a particle can exist in multi-
ple states simultaneously. Unlike classical objects,
which are typically confined to definite properties,
such as position or momentum, quantum parti-
cles can be in a state that encompasses a range
of possibilities. This is exemplified by the famous
Schrodinger’s cat thought experiment [1], where the
state of a cat is envisioned as a superposition of the
dead and alive states until its state is observed.
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Entanglement, on the other hand, reveals a pro-
found correlation between particles that defies clas-
sical explanations. When two or more particles be-
come entangled, their states become intertwined,
regardless of the distance between them. Measure-
ments made on one particle instantaneously affect
the state of the other, irrespective of the spatial
separation. This concept, famously described as
"spooky action at a distance" by Einstein, Podol-
sky, and Rosen [2], challenges our classical intuition
that information cannot travel faster than the speed
of light.

To explore the implications of superposition and
entanglement further, Elitzur and Vaidman devised
the bomb test problem as a thought experiment [3].
The problem is set up as follows: A bomb is placed
inside a chamber that has two entrances, each with
a photon detector. The bomb is designed to either
explode or not depending on the polarization of the
photon that enters the chamber. However, the ex-
periment is set up in such a way that it is impossi-
ble to know whether the bomb has exploded or not
without disturbing the system. This is because the
photon that enters the chamber is in a superposi-
tion of two polarizations, and the system becomes
entangled with the bomb. This experiment raises
the question of how to know whether the bomb has
exploded or not without actually disturbing the sys-
tem.

8.2 Bomb-testing problem

The Elitzur and Vaidman experiment consists
of a Mach-Zehnder interferometer setup, consist-
ing of beam splitters with reflectivity R, to ex-
plore the wave-particle duality of light and the con-
cept of quantum superposition. In this experiment,



a single-photon light source is employed, ensuring
that only one photon is emitted at a time. The
experiment begins with the photon reaching the
first beam-splitter, which divides the incoming light
equally into two paths: path A (upper) and path B
(lower). Each path is equipped with mirrors that
redirect the photon towards the final beam-splitter.

The configuration of the interferometer is such
that, under normal conditions, the beams interfere
constructively at one of the detectors, referred to as
D1, while they interfere destructively at the other
detector, D2. This implies that when both paths
are unobstructed, we expect to detect the photon
exclusively at D1. This behavior aligns with clas-
sical expectations, as the constructive interference
leads to a higher probability of detecting the photon
at D1.

However, here’s where the experiment becomes
intriguing. Elitzur and Vaidman introduce a clever
twist: they propose a specific set of conditions where
one of the paths can be intentionally blocked. Re-
markably, even when a path is obstructed, the ex-
periment reveals a counterintuitive result. Instead
of detecting the photon only at D1, as expected
from classical reasoning, the experiment demon-
strates that an equal amount of light is detected
at both detectors, D1 and D2. To add drama, they
propose that the path is blocked by a bomb that
is triggered by a photodetector when it absorbs a
single photon, as depicted in Figure (8.1).

— ‘Dz

Figure 8.1: Elitzur-Vaidman experiment without
the bomb (top) and with the bomb (bottom).
Adapted from Koppell et al (2022).

In the case of single photon emissions, the out-
comes of the interferometer can be categorized as
follows:

e No detector clicks: This outcome occurs
when the emitted photon interacts with an ob-
ject placed in the path of the beam, preventing
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the photon from reaching any of the detectors.
In this scenario, the presence of the object ob-
structs the photon’s path, leading to the ab-
sence of any detection.

e Detector D1 clicks: This outcome can occur
in two situations. Firstly, when the object is
present in the path of the photon, causing it to
interact and redirect to D1. Secondly, even in
the absence of the object, D1 may still register
a detection. Therefore, when D1 clicks, it indi-
cates that the measurement has not succeeded
and necessitates another attempt to obtain con-
clusive results.

e Detector D2 clicks: This is the desired out-
come, as it signifies the measurement of the
presence of an object without directly interact-
ing with it, unlike in the first case. The occur-
rence of a detection at D2 suggests the absence
of any obstruction in the path of the photon,
indicating the likely presence of the object be-
ing measured.

Importantly, it is crucial to emphasize that the
presence of an object can be reliably inferred only
when a detection occurs at D2. This is due to the
experimental setup, which is configured to yield de-
structive interference at D2. The destructive in-
terference ensures that a detection at D2 can only
be attributed to the presence of the object, as any
obstruction in the photon’s path would result in a
different outcome.

Using the quantum mechanical formalism, we can
describe the state of a photon moving down as |1)
and up as |2). Let’s assume a beam-splitter with re-
flectivity a for |1) and b for |2). Then, the operation
for the beam-splitter is

1) 25 (1) +i12)

12) 2% 2=(12) +4 1))

(8.1)

and the operation for a mirror is

1) s i)2)

e 8.2
2) = i1) &

When the object is absent in the system, as ex-
ample A in Figure 8.1, the evolution is

BS M1 .
1) 25 2o+ i) 2 (12 - )
2%, 2(612) ~ 1)~ (1) +i2)
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In this case only detector D1 clicks, with probability
1.

If there is an object in the path, the photon can
be absorbed, described by the state |s). Then the
evolution will be given by

BS

1) 25 () +[2) 2 T (i12) + ils))

Sl

BS
-

(i12) — (1)) |s) -

L1

V2
We then have that the detectors will collapse this
quantum state into

I,
‘2>7
|5

Thus, we can predict that the D2 detector only
clicks when there is an object in the path, in this
case the photon makes a measurement without in-
teracting with the object in 25% of the measure-
ments.

The success rate of interaction-free measurements
can be quantified by the ratio of the probability of
detecting the object and the sum of the probabilities
of detection and of the photon being absorbed by
the object:

N =

D1 clicks, probability = 1/4
D2 clicks, probability = 1/4
no clicks, probability = 1/2

|1> Bomb test

_ P(det)
eV = P(abs) + P(det)

If 50/50 beam-splitters are used in the experi-
ment, we have P(det) = 1/4 and P(abs) = 1/2,
therefore n gy = 1/3. In the general case, for
beam splitters with reflectivity R, we have n gy =
(1—R)/(2—R), which tends to the limit n gy < 0.5.

(8.3)

8.3 Interaction-Free Mesura-

ment

Since Elitzur and Vaidman’s proposal, further
advances have been made in the field of non-
interaction measurements with the goal of increas-
ing the 25% chance of detecting the bomb without
actually interacting with it. One notable line of re-
search involves using the Zeno effect to increase the
probability of making measurements without direct
interaction, reaching probabilities close to 100%.

The Zeno effect, named after the ancient Greek
philosopher Zeno of Elea, refers to the phenomenon
where frequent observations or measurements can
significantly delay or even halt the evolution of a
quantum system. This effect can be observed when
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Figure 8.2: Horizontal polarization of a photon
passing through N polarization rotators (90°/N ro-
tation each) converts it to vertical polarization,
leading to its blockage by the horizontal polarizer
(top). Inserting a horizontal polarizer after each ro-
tator inhibits the polarization change, enabling light
detection beyond the horizontal polarizer (bottom).
Adapted from Venugopalan (2007).

horizontally polarized light is passed through polar-
ization rotators. In one scenario, a single measure-
ment is made after the light passes through a hori-
zontal polarizer at the end, resulting in a measure-
ment intensity of 0%. In another scenario, measure-
ments are taken at each rotation, yielding non-zero
measurements, as depicted in Figure 8.2.

1 [ 1 [ 1 .D
o 3 ) 3 .s !

] [ 1 [ 1 .Dz
Figure 8.3: Variation of the Elitzur-Vaidman bomb
testing problem with repeated tests known as

interaction-free measurement.
Adapted from Koppell et al (2022).

In the context of the EV problem, the Zeno ef-
fect can be harnessed to increase the probability of
successfully detecting an object without interacting
with it. Several years later, Kwiat, Weinfurter, Her-
zog, Zeilinger, and Kasevich [5] proposed a different
method that enables an increase in 7 gy close to
unity. Their approach involves passing a single pho-
ton through the Mach-Zender interferometer multi-
ple times, where the photon gradually transitions
from the lower left to the upper right half of the
system, as illustrated in Figure 8.3. By introduc-
ing detectors at each cycle, the probability of detec-
tion increases via the "down" port of the final beam



splitter, indicating the presence of the object.

By incorporating detectors at each cycle, the pho-
ton acquires a probability, P = cos?(7/2n), where n
represents the number of cycles, to persist along the
lower path. Evidently, the probability of the pho-
ton emerging through the lower exit after n cycles

is given by:
n
P = {cos2 (%)} .

As the value of n increases (n > 4), the likelihood of
achieving interaction-free measurements surpasses
50% of the maximum probability in the original EV
setup [5]. Moreover, as n becomes larger, the prox-
imity to an efficiency parameter, ngy = 1, is at-
tained.

(8.4)

Polarization rotator
(90°/N)

Polarizing
beam-splitters

Photon removed
after N cycles

Figure 8.4: Variation of the Elitzur-Vaidman bomb
test problem using a cavity for n repetitions of the
injected single-photon.

Adapted from Kwiat.

Single photon
(H polarized)

Another approach involves injecting a single pho-
ton into a cavity to conduct the test multiple times,
utilizing only one object instead of multiple objects
as in the previous proposal. This method can be im-
plemented by passing the photon through the same
Mach-Zender interferometer for n iterations, as de-
picted in Figure 8.4, or by employing a Fabry-Perot
resonator as an alternative [5, 6]. These experimen-
tal setups also serve to explore quantum eraser phe-
nomena using interaction-free measurements [6].

8.4 Experiments

To qualitatively observe the experiment proposed
by Elitzur and Vaidman, a Mach-Zender interferom-
eter was constructed using two 50/50 beam-splitters
and a HeNe laser operating at a wavelength of 632.8
nm, as illustrated in Figure 8.5.
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Figure 8.5: Reproduction of the original experimen-
tal setup of the Elitzur and Vaidman bomb testing
problem using a Mach-Zender interferometer with
two beam-splitters with reflectivity R = 50% (up);
and interference patterns observed by the interfer-
ometer (bottom).

Elaborated by the author.

During the setup of the experiment, it becomes
evident that when both paths are unobstructed, an
interference pattern emerges at one output, while
the complementary interference pattern arises at
the other. However, when one of the paths is
blocked by an object, the interference pattern van-
ishes, resulting in the previously darkened region
becoming illuminated, as illustrated in Figure 8.6.

Figure 8.6: Comparison between the original EV
experiment with no object in the path (up) and with
an object in the path (bottom).

Elaborated by the author.



8.5 Simulations

The EV problem can also be investigated through
experiments using quantum circuits implemented
via high-level programming languages on commer-
cially available gate-based superconducting quan-
tum processors, such as those provided by IBM [7].

By employing a quantum circuit with two qubits,
representing the photon and the bomb, we can uti-
lize a Hadamard gate (H) to split the initial state
|go) = |0) into |0) and |1), encoding the which-path
information. Subsequently, a CNOT gate entangles
|go) with the target qubit |¢;), simulating the role
of the bomb. Treating |qo) as the signal, a second
Hadamard gate is applied to probe the interference
patterns. The desired outcome of this EV experi-
ment relies on the state |00), indicating a successful
interaction-free measurement. As depicted in Fig-
ure 8.7, we observe that |00) is obtained in 25% of
the measurements.
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Figure 8.7: Quantum circuit for the original EV ex-
periment, using the H gate to represent a 50/50
beam-splitter and a C-NOT gate to represent the
bomb; and quantum circuit quasi-probabilities us-
ing IBM’s cloud-based quantum computing service
(Qiskit Runtime).

Elaborated by the author.

To enhance the success rate of interaction-free
measurements, we can construct a quantum cir-
cuit employing n rotation operators, specifically R,
gates, which perform single-qubit rotations around
the x-axis by an angle of §/n (in radians) instead
of using the Hadamard gate. In this configuration,
as the number of cycles increases, the probability of
achieving interaction-free measurements improves.
Consequently, for sufficiently large values of n, we
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can approach an efficiency parameter of n gy = 1,
as illustrated in Figure 8.8.
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Figure 8.8: Quantum circuit for the interaction-free
measurement experiment proposed by [5] for n cy-
cles, where the R, (7/n) replaces the H gate for con-
trol over the reflectivity; and experimental data of
quantum circuits from 1 to 10000 cycles using cloud-
based quantum computing service by IBM (Qiskit
Runtime).
Elaborated by the author.

8.6 Discussion

This puzzling outcome arises from the wave-
particle duality inherent in quantum mechanics.
Due to the superposition principle, the single pho-
ton simultaneously exists in both paths A and B
until a measurement is made. Blocking one of
the paths introduces an "either-or" scenario: if the
blocked path is chosen, the photon must be in the
unblocked path, and vice versa. Consequently, the
photon appears to exhibit an intriguing property
called "quantum nonlocality," where its presence in
one path seems to affect the measurement outcome
at the other detector.

By carefully controlling the experimental condi-
tions and analyzing the detection probabilities at
D1 and D2, Elitzur and Vaidman effectively demon-
strate a quantum "interaction-free measurement."
This peculiar phenomenon offers insights into the
nature of quantum superposition and provides a



unique perspective on the counterintuitive behav-
iors exhibited by quantum systems.

8.7 Interpretations

The Elitzur-Vaidman bomb test experiment
raises intriguing questions about the interpretations
of quantum mechanics. Various perspectives have
been proposed to explain the outcomes of the ex-
periment, each offering unique insights into the fun-
damental nature of quantum phenomena.

One interpretation focuses on the notion of a "sin-
gle real result." It suggests that the measurement
outcome corresponds to the actual interaction be-
tween the photon and the bomb. The experiment
demonstrates that a conclusive result can be ob-
tained without direct interaction, challenging classi-
cal intuitions regarding measurement processes [3].
Another aspect explored in the context of the ex-
periment is the violation of Bell inequalities. These
mathematical inequalities provide a criterion to as-
sess the presence of non-local correlations in entan-
gled systems [9]. The violation observed in the ex-
periment suggests the existence of non-local influ-
ences, highlighting the non-classical nature of quan-
tum entanglement.

The interpretation known as Bohmian mechanics
offers an alternative perspective. It proposes the ex-
istence of hidden variables that determine the par-
ticle’s trajectory, even in the presence of superpo-
sition and entanglement. In the Elitzur-Vaidman
experiment, this interpretation posits that the pho-
ton’s path is guided by its interaction with the
bomb, providing an explanation for the observed
measurement outcomes [10].

On the other hand, the many-worlds interpreta-
tion introduces the concept of parallel universes.
According to this interpretation, when the Elitzur-
Vaidman experiment is conducted, the universe
splits into different branches corresponding to each
possible measurement result [11, 12]. Each branch
represents a different reality where the photon in-
teracts with the bomb or avoids it and the results of
the experiment can be understood as the observer’s
experience in one of the many coexisting parallel
worlds. Therefore, this interpretation says that
when the observer manages to predict that there
is a bomb without interacting with it, the photon
was absorbed into another universe and the bomb
did indeed explode.

These interpretations offer diverse and thought-
provoking explanations for the outcomes of the
Elitzur-Vaidman bomb test. They deepen our un-
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derstanding of the intricate nature of quantum me-
chanics and its implications for the nature of real-
ity, measurement, and the behavior of quantum sys-
tems. By exploring these interpretations, we gain
valuable insights into the profound and enigmatic
aspects of the quantum world.

8.8 Conclusion

The bomb test problem illustrates the nonlocal
nature of entanglement in quantum mechanics. The
ability to obtain information about a particle’s state
at a remote location, through the entanglement with
another particle, implies a connection that tran-
scends traditional notions of spatial distance and
challenges our understanding of causality. While
the exact mechanisms behind this nonlocality are
still a subject of ongoing research and debate, ex-
perimental observations have consistently confirmed
the validity of entanglement and its influence on dis-
tant particles.

These remarkable insights into the nonlocal na-
ture of entanglement hold profound implications for
the advancement of quantum technology. Exploit-
ing entanglement has the potential to revolution-
ize fields such as quantum communication, quantum
cryptography, and quantum computing. It was even
a topic that earned the researcher Anton Zeilinger,
quoted here, the Nobel Prize for applying these con-
cepts in experiments with entangled photons, es-
tablishing the violation of Bell inequalities and pio-
neering quantum information science. For instance,
entanglement-based protocols enable secure and ef-
ficient quantum key distribution, facilitating secure
communication over long distances. Moreover, the
ability to manipulate and control entangled parti-
cles is a fundamental requirement for quantum com-
putation, where quantum bits (qubits) exhibit su-
perior computational capabilities compared to clas-
sical bits. Consequently, understanding and har-
nessing the nonlocality of entanglement not only
enriches our understanding of quantum mechanics
but also drives innovations in quantum technology
with transformative implications for various scien-
tific and technological domains.
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